跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/04 16:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝裕翔
研究生(外文):Yu-hsiang Hsieh
論文名稱:醱酵產氫之模場操作
論文名稱(外文):Dark fermentative hydrogen production with pilot scale fermentors.
指導教授:林屏杰
指導教授(外文):Ping-jie Lin
學位類別:碩士
校院名稱:逢甲大學
系所名稱:綠色能源科技碩士學位學程
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:180
中文關鍵詞:濃縮糖蜜醱酵廢液PCR-DGGE退漿廢水模場規模醱酵產氫
外文關鍵詞:fermentative hydrogen productiondesizing wastewaterpilot scalePCR-DGGEcondensed molasses fermentation soluble
相關次數:
  • 被引用被引用:15
  • 點閱點閱:437
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
廉價的基質有助於提升暗醱酵產氫的競爭力,為發展非糧料源之模場產氫技術,本研究分別以60 L 及400 L 模場進行退漿廢水及濃縮糖蜜醱酵廢液之產氫試驗,期鹿簳?W模放大之相關參數並與商業
化程序接軌。此外,本研究亦以分子生物技術分析各系統之菌相結構,輔以觀察模場醱酵產氫系統內之微生物消長。
退漿廢水先以實驗室規模之CSTR (continuous flow stirred tank reactor)反應器進行各項環境因子及操作策略之試驗,結果顯示料源預熱處理(60℃、1小時)配合 HRT (hydraulic retention time) 12 h之操作,
可抑制非產氫菌的活性並改善系統操作之穩定性。最適之pH 值為5.5,然而卻無法穩態操作於HRT 8 h,而退漿廢水經糖化處理則可改善此問題,於HRT 8 h 其HPR (H2 production rate)、HY (H2 yield)及
HPE (overall H2 production efficiency)分別可達15.2 m3/m3/d、9.77 mmol-H2/g-hexose 及37.5%,若配合鹼處理(pH 10.0-10.5)則可進一步提升氫氣產率。
不幸地,經各項預處理之退漿廢水無法以60 L 模場順利啟動,然於濃縮飲料廢品中添加0-10% (總糖比例)之退漿廢水則可順利操作於HRT 6 h,HPR、HY 及HPE 分別可達20.2 m3/m3/d 、8.7
mmol-H2/g-hexose 及37.2%。菌群結構分析顯示添加0-10%退漿廢水醱酵產氫之模場操作之各試程其系統內均具有產氫菌Clostridium sp.,並以C. butyricum 為優勢產氫菌。然而,當退漿廢水添加量增至20%,系統產氫狀態隨即
降至零,菌群結構分析顯示系統中仍存有C. butyricum,據此推測無法順利產氫之主因應非生物性的問題,可能退漿廢水含有抑制產氫之化學物質。
以糖蜜醱酵液進行400 L 模場產氫試驗,系統可於HRT 6 h (Cs =40 g COD/L)成弗珧吽A但隨操作的持續進行,系統之產氫效能發生週期性升降的現象,透過基質預熱策略(60℃, 1 h)可明顯改善此問題,於HRT 4 h 及基質濃度70 g COD/L (總糖濃度17.7 g/L)之條件,HPR
及HY 分別可達17.8 m3/m3/d 及9.1 mol H2/g-hexose。菌群結構分析顯示,基質預熱可使原存於系統中之Corynebacterium glutamicum 趨於弱勢,使系統由不利於產氫之乳酸醱酵轉變成有利於產氫之丁酸醱
酵。另外,於預熱系統中發現存在可分解醣類及乳酸而產生氫氣之Megasphaera sp.,並由液相代謝物組成之乳酸含量降低推測其對於產氫具有相當程度的貢獻。
於弱勢,使系統由不利於產氫之乳酸醱酵轉變成有利於產氫之丁酸醱
酵。另外,於預熱系統中發現存在可分解醣類及乳酸而產生氫氣之
Megasphaera sp.,並由液相代謝物組成之乳酸含量降低推測其對於產
氫具有相當程度的貢獻。
The cheap substrate can improve competitiveness for dark
fermentative hydrogen production. In order to develop the pilot
technology of hydrogen production from non-grain feedstock, this study
explored the hydrogen production from desizing wastewater (DW) and
condensed molasses fermentation soluble (CMS) using 60 and 400 L
pilot-scale fermentors, respectively. It is expected that experiment results
obtain several related parameters for scale up and futher connect with
commercial processes. In addition, the microbial community structure in
systems was analysed by using molecular biological techniques.
DW was initially conducted the experiments of environmental
factors and operation strategies with a lab-scale continuous flow stirred
tank reactor (CSTR). The results showed that combination substrate
preheating (60℃, 1 h) and HRT (hydraulic retention time) 12 h could
inhibit the activity of non-hydrogen-producing bacteria and improve the
stability of system operation. The optimum pH value was 5.5, but the
CSTR reactor could not be operated steady at a HRT of 8 h. DW via
saccharification pretreatment could improve this problem, obtaining a H2
production rate (HPR), H2 yield (HY) and overall H2 production
efficiency (HPE) of 15.2 m3/m3/d, 9.77 mmol-H2/g-hexose and 37.5%,
respectively, at a HRT of 8 h. If the pretreatment processes combined
saccharification with alkali (pH 10.0-10.5) treatment, it could further
improve the hydrogen yield.
Unfortunately, the 60 L pilot-scalr reactor could not be started up by
feedimg variously pretreated DW. However, the waste concentrated
beverage added 0-10% (total sugar ratio) DW could be successfully
operated at HRT 6 h, getting a HPR, HY and HPE of 20.2 m3/m3/d, 8.7
mmol-H2/g-hexose and 37.2%, respectively. The analytical results of
microbial community structure showed that hydrogen-producing
Clostridium sp. existed in the reactor for three stages of addition of
0-10% DW, and C. butyricum was the predominant H2-producing
bactrrim in the system. However, hydrogen production decreased to near
zero when the addition of DW was increased to 20%. The analytical
results of microbial community structure showed that C. butyricum still
presented in the reactor. Accordingly, the main cause of stopping
hydrogen production should not result from propagation of non-H2-
producing bacteria in the fermentor. It is highly probable that chemical
substances of hydrogen inhibition existed in desizing water.
The 400 L pilot–scale bioreactor could successfully start up by
feeding CMS at HRT 6 h (Cs = 40 g COD/L). However, the performance
of hydrogen production became periodic fluctuation situation. This
problem could be improved by substrate preheating (60℃, 1 h), obtaining
a HPR and HY of 17.8 m3/m3/d and 9.1 mol H2/g-hexose, respectively, at .
HRT 4 h and substrate concentration 70 g COD/L (total sugar
concentration 17.7 g/L). The analytical results of microbial community
structure showed that Corynebacterium glutamicum presented in the
system became non-predominant bacterium by substrate preheating,
resulting in the shift from lactate fermentation into butyrate fermentation.
In addition, the Megasphaera sp., which can decompose carbohydrates
and lactate to produce hydrogen, was found that existed in the system of
substrate preheating. According to the desrese of lactate content in
soluble metabolites, there was speculatation that Megasphaera sp. gave
some contribution to hydrogen production.
誌謝 ..................................................................................................... I
摘要 ..................................................................................................... I
ABSTRACT ...................................................................................... III
目錄 .................................................................................................... V
圖目錄 ................................................................................................ X
表目錄 ............................................................................................. XII
符號說明 ......................................................................................... XIV
第一章 緒論 ...................................................................................1
1-1 前言 ...............................................................................................1
1-2 研究動機及目的 ..............................................................................2
1-3 研究架構 ........................................................................................3
第二章 文獻回顧 ............................................................................7
2-1 能源的重要性 .................................................................................7
2-2 氫能 ...............................................................................................8
2-2-1 氫能價值 ..............................................................................8
2-2-2 氫製備技術 ...........................................................................9
2-3 生物產氫 ...................................................................................... 10
2-3-1 光合作用 ............................................................................ 14
2-3-2 光醱酵 ................................................................................ 17
2-3-3 暗醱酵 ................................................................................ 19
2-4 厭氧醱酵產氫微生物之特性 ........................................................... 23
2-4-1 Enterobacter sp. .................................................................. 23
2-4-1 Bacillus sp. ......................................................................... 24
2-4-1 Clostridium sp. .................................................................... 27
醱酵產氫之模場操作
vii
逢甲大學e-Theses & Dissertations (99 學年度)
2-4-2 Klebsiella sp. ....................................................................... 32
2-4-3 Megasphaera sp. .................................................................. 36
2-5 環境因子對醱酵產氫的影響 ........................................................... 38
2-5-1 有機廢水 ........................................................................... 38
2-5-1-1 濃縮糖蜜醱酵液 ............................................................................ 38
2-5-1-2 紡織廠退漿廢水 ............................................................................ 43
2-5-1-3 濃縮飲料廢品 ................................................................................ 46
2-5-2 營養鹽及微量金屬 ............................................................... 46
2-5-3 水力滯留時間及有機負荷速率.............................................. 50
2-5-4 pH ...................................................................................... 52
2-5-5 ORP.................................................................................... 54
2-6 厭氧醱酵產氫系統 ........................................................................ 56
2-6-1 CSTR .................................................................................. 56
2-6-2 CIGSB ................................................................................ 57
2-7 顆粒污泥 ...................................................................................... 59
2-7-1 顆粒污泥形成機制 ............................................................... 59
2-7-2 顆粒污泥結構...................................................................... 62
2-8 分子生物技術於生物產氫之應用 .................................................... 64
2-8-1 分子生物技術...................................................................... 64
2-8-2 16S rDNA 及funct io nal gene ................................................ 66
2-8-3 聚合酶連鎖反應 ................................................................. 68
2-9 國內外模場產氫技術 ..................................................................... 73
第三章 研究材料及方法 ................................................................ 77
3-1 退漿廢水醱酵產氫 ...................................................................... 77
3-1-1 實驗室規模之產氫試驗 ........................................................ 77
3-1-1-1 產氫污泥及培養基配方 .............................................................. 77
3-1-1-2 退漿廢水前處理 ......................................................................... 77
醱酵產氫之模場操作
viii
逢甲大學e-Theses & Dissertations (99 學年度)
3-1-1-3 CSTR 反應器之產氫操作 ........................................................... 78
3-1-2 60 L 模場規模之產氫試驗 ................................................. 79
3-1-2-1 60 L 模場系統之設計 ................................................................. 79
3-1-2-2 60 L 模場系統之建造 ................................................................. 82
3-1-2-3 60 L 模場系統試車 ..................................................................... 83
3-1-2-4 60 L 模場系統改良 ..................................................................... 84
3-1-2-5 退漿廢水之模場產氫試驗 .......................................................... 87
3-1-2-6 退漿廢水與濃縮飲料廢品混合進料之模場產氫試驗 ................ 87
3-2 400 L 模場規模之濃縮糖蜜醱酵廢液產氫.............................. 87
3-2-1 產氫污泥及培養基配方 ................................................................. 87
3-2-2 濃縮糖蜜廢液之模場產氫試驗 ..................................................... 88
3-3 氣相組成分析............................................................................... 90
3-4 液相組成分析............................................................................... 91
3-5 水質分析 ...................................................................................... 92
3-5-1 一般水質分析 .................................................................... 92
3-5-2 總糖分析 ........................................................................... 92
3-6 菌相分析 ..................................................................................... 94
3-6-1 DNA 萃取 ........................................................................... 94
3-6-2 聚合酶鏈鎖反應 .................................................................. 96
3-6-3 變性梯度明膠電泳 ............................................................... 98
3-6-4 Acryla mide/Bis 膠體之DNA 純化 ......................................... 99
第四章 結果與討論 ..................................................................... 100
4-1 退漿廢水之產氫試驗 ................................................................... 100
4-1-1 退漿廢水性質 .................................................................. 100
4-1-2 實驗室規模之產氫試驗 ...................................................... 102
4-1-2-1 熱處理之效應 ........................................................................... 102
4-1-2-2 HRT 及基質濃度之效應 ........................................................... 103
4-1-2-3 pH 值之效應 ............................................................................. 106
4-1-2-4 糖化處理之效應 ....................................................................... 109
醱酵產氫之模場操作
ix
逢甲大學e-Theses & Dissertations (99 學年度)
4-1-2-5 鹼處理之效應 ........................................................................... 113
4-1-3 60 L 模場規模之產氫試驗 ......................................................... 117
4-1-3-1 以蔗糖進行模場試車 ..................................................... 117
4-1-3-2 糖化處理之退漿廢水模場產氫 ................................................ 123
4-1-3-3 糖化及鹼處理之退漿廢水模場產氫......................................... 128
4-1-3-4 退漿廢水與濃縮飲料廢品混合進料之模場產氫 ..................... 133
4-1-3-5 60 L 模場規模之菌群結構分析 ................................................ 140
4-3 400 L 模場規模之產氫試驗 ........................................................ 150
4-3-1 400 L 模場規模之糖蜜醱酵廢液產氫試驗 ......................... 150
4-3-1-1 基質效應 ................................................................................... 151
4-3-1-2 HRT 及OLR 效應 ..................................................................... 152
4-3-1-3 基質預處理效應 ....................................................................... 153
4-3-1-4 400 L 模場規模之菌群結構分析 .............................................. 157
第五章 結論與建議 ..................................................................... 159
5-1 結論 ........................................................................................... 159
5-2 建議 ........................................................................................... 161
參考文獻 .......................................................................................... 162
附錄 ................................................................................................. 178
附錄1 .............................................................................................. 178
作者簡歷 .......................................................................................... 179
中文文獻
圖書
王三郎,1994,應用微生物學,高立圖書有限公司。

曲新生、陳發林,2006,氫能技術,五南圖書出版有限公司。

李國鏞,1992,普通微生物學,九州圖書文物有限公司,第304頁。

周更生,2006,二十一世紀的新化學工程,五南圖書出版有限公司。

林秋裕,1995,環境工程微生物學,國彰出版社。

康世芳,1991,染整廢水處理(上),染化雜誌,Vol. 79,35至41頁

蔡文城,1984,應用臨床微生物診斷學,第475頁。

期刊
吳文騰,2011,台灣的能源概況,科學發展,457:123-126

吳石乙、白景成、林祺能、陳政群,2004,生質產氫之三相流反應器介紹,化工技術,第12卷第12期,第129-146頁。

李國興、張嘉修、林屏杰、林秋裕、吳石乙、洪俊雄,2007,厭氧生物產氫之研發,化工,第54卷第1期,第69-106頁。

張嘉修 ,2009,生質氫能,科學發展,433:32-35

張嘉修、李國興、林屏杰、吳石乙、林秋裕,2002,以環境生物技術生產清潔能源-氫氣,化工專欄,第49卷第6期

研討會論文集
歐陽嶠暉、蕭慶忠,1986,毒性物質對旋轉生物接觸法處理影響限值之研究,第十一届廢水處理技術研討會論文集135-149.

碩博論文
王淑亭,2008,厭氧產氫顆粒污泥形成過程中微生物結構變化‧碩士論文‧國立中興大學環境工程學系。

吳柔賢,2008,食品廢水之厭氧醱酵產氫‧博士論文‧逢甲大學土木及水利工程博士學位學程‧

李國興,2004,以顆粒污泥程序進行高速厭氧醱酵產氫‧博士論文‧逢甲大學化學工程學系。

李文龍,2003,澱粉葡萄糖化酵素固定在幾丁聚醣之研究。碩士論文。國立雲林科技大學工業化學與災害防治研究所。

官荻偉,2007,探討顆粒性厭氧產氫反應槽中各微生物組成關係對產氫效能之影響‧碩士論文‧中興大學環境工程學系‧

林祺能,2006,矽膠固定化細胞暗醱酵產氫技術‧博士論文‧逢甲大學化學工程學系‧

柯政志,2009,負壓醱酵產氫之研究‧碩士論文‧逢甲大學化學工程學系。

徐耀豐,2007,澱粉醱酵產氫之研究‧碩士論文‧逢甲大學化學工程學系‧

張仕旻,2001,利用薄膜反應器於高溫厭氧產氫生物程序之研究‧碩士論文‧成奶j學環境工程學系研究所‧

張仕旻,2002,利用薄膜反應器於高溫厭氧產氫生物程序之研究‧碩士論文‧國立成奶j學環境工程學系。

黃正怡,2001,營養鹽濃度對於含梭狀芽孢桿菌之植種材料利用有機廢棄物產氫之影響‧碩士論文‧國立高雄第一科技大學環境與安全衛生系。

黃郁欣,2006,以創新之攪拌式顆粒污泥床進行厭氧醱酵產氫。碩士論文。逢甲大學化學工程學系。

黃俊霖,2001,以分子生物技術探討厭氧生物產氫程序之菌群結構。碩士論文。國立中央大學環境工程研究所。

楊立豪,2010,以海濱污泥進行醣類連續醱酵產氫‧博士論文‧逢甲大學化學工程學系。

趙禹杰,2004,澱粉及蛋白腖複合基質厭氧醱酵產氫程序之弁鉞?禲E碩士論文‧國立成奶j學環境工程系碩士論文‧

蔡佳蓉,2004,迴流式連續攪拌混合反應槽系統之厭氧產氫‧碩士論文‧逢甲大學水利工程學系。

蔡宗澤,2008,高溫高壓之電解水產氫效率分析。碩士論文。國立中央大學能源工程研究所。

蕭清郎,2010,Clostridia屬細菌共培養分解濃縮糖蜜醱酵液產氫‧博士論文‧逢甲大學土木及水利工程博士學位學程。

蕭嘉瑢,2004,複合基質厭氧氫發酵生物程序操控之弁鉞?穭峇壎芡侅?芮A之研究。碩士論文。成奶j學環境工程學系。

賴志揚,2008,米飯澱粉醱酵產氫之研究‧碩士論文。逢甲大學化學工程學系‧

賴奕茵,2008,紡織廠染整段生產排程問題之研究。碩士論文。東海大學工業工程與經營資訊研究所。

簡青紅,2001,利用傳統培養方法和分子生物方法探討厭氧生物產氫反應槽的微生物社會結構。碩士論文。國立成奶j學生物學研究所。

網路資料
趙雯蕙、劉曉蘭,2002,染整業環保技術整合應用介紹,經濟部(http://proj.moeaidb.gov.tw/environet/publication/monthly11_m7.htm)

英文文獻
Ahn Y-H. 2000. Physicoch emical and microbial aspects of anaerobic granular pellets.J Environ Sci Health 35(9): 1617–35.

Akkerman I, Janssen M, Rocha J, Wijffels RH. 2002. Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrog Energy 27(11-12): 1195-1208.

Amann, R., W. Ludwig, and K.H. Schleifer. 1988. â-subunit of ATP-synthase: a useful marker for studying the phylogenetic relationship of eubacteria. J. Gen. Microbiol 134: 2815-2821.

APHA. 1997. Standard Methods for the Examination of Water and Wastewater, 19th edition, American Public Health Association, New York, USA.

Auli, H. 1991. The Genera Pectinatus and Megasphaera. In Albert, B., G. T. Hans, D. Martin, H. Wim, and K. Karl-Heinz (ed.), The Prokaryotes. Vol II. Springer-Verlag, New York: 1993-2004.

Bahl, H. and P. Dürre. 1993. Biotechnology Vol. 1 Biological Fundamentals: 286 –323.

Bailey JE, Ollis DF. 1986. Biochemical engineering fundamentals, 2nd edn. McGraw-Hill.

Batstone DJ, Keller J, Blackall LL. 2004. The influence of substrate kinetics on the microbial community structure in granular anaerobic biomass. Water Res 38: 1390-1404.

Barney J. 2010. The energy report -100% renewable energy by 2050. World Wide Fund (WWF) The Energy report: 13.

Benemann JR. 1997. Feasibility analysis of photobiological hydrogen production. Int J Hydrog Energy 22: 979-987.

Benemann JR. 2000. Hydrogen production by microalgae. J Appli Phycol12: 291-300.
Brock TD, Madigan MT, Martiko JM, Parker J. 1994. Biology of Microorganisms. 7th ed. Englewood Cliffs: Prentice Hall. Inc.

Bulich A. A. 1982. “A Practical and Reliable Method For Monitoring the Toxicity of Aquatic Sample”, Process Biochem: 45-47.

Chen X, Sun Y, Xiu ZL, Li XH, Zhang D. 2006. Stoichiometric analysis of biological hydrogen production by fermentative bacteria. Int J Hydrogen Energy 31: 539-549.

Chin HL, Chen ZS, Chou CP. 2003. Fedbatch operation using Clostridium acetobutylicum suspension culture as biocatalyst for enhancing hydrogen production. Biotechnol Prog 19: 383-388.

Cohen A, van Gemert JM, Zoetemeyer RJ, Breure AM. 1984. Main characteristics and stoichiometric aspects of acidogenesis of soluble carbohydrate containing wastewaters. Proc Biochem 19: 228-232.

Collins, M. D., P. A. Lawson, A. Willems, J. J. Cordoba, J. Fernandez-garayzabal, P. Garcia, J. Cai, H. Hippe, and J. A. E. Farrow. 1994. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int. J. Syst. Bacteriol. 44: 812-826.

Counotte, G. H. M., R. A. Prins, R. H. A. M. Janssen, and M. J. A. De Bie. 1981. Role of Megasphaera elsdenii in the fermentation of DL-[2-''3C]lactate in the rumen of dairy cattle.Appl. Environ. Microbiol 42: 649-655.

Das D, Veziroglu TN. 2001. Hydrogen production by biological process: a survey of literature. Int J Hydrogen Energy 26: 13-28.

Desvaux, M., E. Guedon, and H. Petitdemange. 2000. Cellulose catabolism by Clostridium cellulolyticum growing in batch culture on defined medium. Appl. Environ. Microbiol 66: 2461-2470.

Diaz E, Amils R, Sanz JL. 2003. Molecular ecology of anaerobic granular sludge grown at different conditions. Water Sci Technol 48: 57-64.


Dorigo, U., Volatier, L., and Humbert, J.F. 2005. Molecular Approaches to the Assessment of Biodiversity in Aquatic Micorbial Communities. Water Research 39: 2207-2218.

Dubois M, Gilles KA, Hamilton JK, Reber PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem 28(3): 350-356.

Elsden, S. R., and D. Lewis. 1953. The production of fatty acids by a gram-negative coccus. Biochem. J. 55: 183-189.

Elsden, S. R., B. E. Volcani, F. M. C. Gilchrist, and D. Lewis. 1956. Properties of a fatty acid forming organism isolated fromthe rumen of sheep. J. Bacteriol. 72: 681-689.

Endo G, Noike T, Matsumoto J. 1982. Characteristics of cellulose and glucose decomposition in acidogenic phase of anaerobic digestion. Proc Soc Civ Engrs 325: 61-68.

Evvyernie D, Yamazaki S, Morimoto K, Karita S, Kimura T, Sakka K, Ohmiya K. 2000. Identification and characterization of Clostridium paraputrificum M-21, a chitinolytic, mesophilic and hydrogen producing bacterium. J Biosci Bioeng 89(6): 596-601.

Fabiano B, Perego P. 2002. Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes. Int J Hydrogen Energy 27: 149-156.

Fang, H. H. P. and H. Liu. 2002. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour. Technol. 82: 87-93.

Fascetti E., D’Dddario E., Todini O. and Robertiello A. 1998. Photosynthetic hydrogen evolution with volatile organic acids derived from the fermentation of source selected municipal solid waste. Int. J. Hydrogen Energy 23: 753-760.

Ferris, M.J., Muyzer, G., Ward, D.M., 1996. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl.Environ. Microbiol 62(2):340–346.


Forsberg, C. W. 1978. Nutritional characteristics of Megasphaeraelsdenii. Can. J. Microbiol 24: 981-985.

Franks AH, Harmsen HJ, Raangs GC, Jansen GJ, Schut F, and Welling GW. 1998. Variations of Bacterial Populations in Human Feces Measured by Fluorescent in situ Hybridization with Group-specific 16S rRNA-Targeted Oligonucleotide Probes. Applied and Environmental Microbiology 64: 3336-3345.

Fumiaki, T., J. D. Chang, N. Mizukami, S. T. Tatsuo, and H. Katsushige. 1993. Isolation of a hydrogen-producing bacterium Clostridium beijerinckii strain AM21B, from termites. Can. J. Microbiol 39: 726-730.

Gaddy JL., Clausen EC. 1992. Clostridiumm ljungdahlii an anaerobic ethanol and acetate producing microorganism. U.S. Patent ;5173429.

Giesecke, D., S. Wiesmayr, and M. Ledinek. 1970. Peptostreptococcus elsdenii from the caecum of pigs. J. Gen. Microbiol. 64: 123-126.

Golias H, Dumsday G J, Stanley G A, Pamment N B, 2002. Evaluation of a recombinant Klebsiella oxytoca strain for ethanol production from cellulose by simultaneous saccharification and fermentation: comparison with native cellobiose-utilising yeast strains and performance in co-culture with thermotolerant yeas. J.Biotechnology. 96:155-168

Gonzalez-Gil G, Lens PNL, Van AA, Van AH, Versprille AI, Lettinga G. 2001. Cluster structure of anaerobic aggregates of an expanded granular sludge bed reactor. Appl Environ Microbiol 67: 3683-3692.

Gottschalk G. 1986. Bacterial Metabolism. 2nd. New York: Springer-Verlag.

Grotenhuis JT, Smit M, Plugge CM, Xu YS, Van LAA, Stams AJ, Zehnder AJ. 1991. Bacteriological composition and structure of granular sludge adapted to different substrates: 1942-1949.

Gutierrez, J., R. E. Davis, I. L. Lindahl, and E. J. Warwick.1959. Bacterial changes in the rumen during the onset of feed-lot bloat of cattle and characteristics of Peptostreptococcus elsdeniin. sp. Appl. Microbiol 7: 16-22.

Haikara, A., 1985b. Detection of anaerobic, Gram-negative bacteria in beer. Monatsschr. fu‥r Brauwissenschaft 38: 239-243.

Haikara, A., 1991. The genera Pectinatus and Megasphaera. In: Balows, A., Truper, H.G., Dworkin, M., Harder,W., Schleifer, K.-H. (Eds.), The Procaryotes. Springer Verlag: 1993-2004
Haikara, A., Enari, T.-M., Lountmaa, K., 1981. The genus Pectinatus, a new group of anaerobic beer spoilage bacteria.In: European Brewery Convention, Proceedings of the 18th Congress, Copenhagen, Denmark, 1981. IRL Press: 229–240.

Haikara, A., Lounatmaa, K., 1987. Characterization of Megasphaera sp., a new anaerobic beer spoilage coccus. In: Euro pean Brewery Convention, Proceedings of the 21st Congress, Madrid, Spain, 1987. IRL Press, Oxford: 473–480.

Hawkes FR, Dinsdale R, Hawkes DL, Hussy I. 2002. Sustainable fermentative hydrogen production: Challenges for process optimisation. Int J Hydrogen Energy 27: 1339-1347.

Heuer, H., Krsek, M., Baker, P., Smalla, K., Wellington, E.M., 1997. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol 63(8): 3233–3241

Heyndrickx, M., De Vos, P., De Ley, J. 1991. Fermentation characteristics of Clostridium pasteurianum LMG 3285 grown on glucose and mannitol. J. Appl. Bacteriol 70: 3233-3241

Hongo M. 1960. Process for production of butanol by fermentation.US Patent; 2945 786.

Horiuchi JI, Shimizu T, Tada K, Kanno T, Kobayashi M. 2002. Selective production of organic acids in anaerobic acid reactor by pH control. Bioresource Technol 82(3): 209-213.

Hulshoff PLW, de Castro Lopes SI, Lettinga G, Lens PNL. 2004. Anaerobic sludge granulation. Water Res 38(6): 1376-1389.

Hungate, R. E. 1966. The rumen and its microbes. Academic Press, Inc., New York.

Hwu CS, van Lier JB, Lettinga G. 1998. Physicochemical and biological performance of expanded granular sludge bed reactors treating long-chain fatty acids. Process Biochem 33(1): 75-81.

Jeison D, Chamy R. 1999. Comparison of the behavior of expanded granular sludge bed (EGSB) and upflow anaerobic sludge blanket (UASB) reactors in dilute and concentrated wastewater treatment. Water Sci Technol 40: 91-97.

Joseph ST and Eva RK. 1986. Intracellular Conditions Required for Initiation of Solvent Production by Clostridium acetobutylicum. Appl. and Environ. Microbiol: 86-91.

Kalia VC, Jain SR, Kumar A, Joshi AP. 1994. Fermentationof bio-waste to H2 by Bacillus lichenoformis. World J Microbiol Biotechnol 10: 224-227.

Kataoka N, Miya A, Kiriyama K. 1997. Studies on hydrogen production by continuous culture system of hydrogen-producing anaerobic bacteria. Water Sci Technol 36: 41-47.

Koku H, Eroglu I, Gündüz U, Yücel M, Türker L. 2002. Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides. Int J Hydrog Energy 27(11-12): 1315-1329.

Kumar A, Jain SR, Sharma CB, Joshi AP, Kalia VC. 1995. Increased hydrogen production by immobilized microorganisms. World J Microbiol Biotechnol 11: 156-159.

Kumar N, Das D. 2001. Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices. Enzyme Microb Technol 29: 280-287.

Ladd, J. N. 1959. The fermentation of lactic acid by a gramnegative coccus. Biochem. J. 71: 16-22.

Ladd, J. N., and D. J. Walker. 1959. The fermentation of lactate and acrylate by the rumen micro-organism LC. Biochem. J.71: 364-373.

Lane, D. J., B. Pace, G. J. Olsen, D.A. Stahl, M. L. Sogin, and N. R. Pace. 1985. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses, Proc. Natl. Acad. Sci. U.S.A. 82: 6955.

Lee CM, Chen PC, Wang CC, Tung YC. 2002. Photohydrogen production using purple nonsulfur bacteria with hydrogen fermentation reactor effluent. Int J Hydrog Energy 27(11-12): 1309-1313.

Lee, K.S., Lin, P.J., Fangchiang, K., Chang, J.S. 2007. Continuous hydrogen production by anaerobic mixed microflora using a hollow-fiber microfiltration membrane bioreactor, Int. J. Hydrogen Energy 32: 950-957.

Lens PNL, De Beer D, Cronenberg CCH, Houwen FP, Ottengraf SPP, Verstraete WH. 1993. Heterogeneous distribution of microbial activity in methanogenic aggregates: pH and glucose microprofiles. Appl Environ Microbiol 59: 3803-3815.

Lettinga G. 1995. Anaerobic digestion and wastewater treatment systems. Antonie van Leeuwenhoek 67: 3-28, 1995.

Lettinga G. 1996. Sustainable integrated biological wastewater treatment. Water Sci Technol 33(3): 85-98.

Levin DB, Pitt L, Love M. 2004. Biohydrogen production: prospects and limitations to pratical application. Int J Hydrogen Energy 29: 173-185.

Liang TM, Cheng SS, Wu KL. 2002. Behavioral study on hydrogen fermentation reactor installed with silicone rubber membrane. Int J Hydrogen Energy 27(11/12): 1157-1165.

Lin CY, Chang RC. 1999. Hydrogen production during the anaerobic acidogenic conversion of glucose. J Chem Technol Biotechnol 74: 498-500.

Lindblad P, Christensson K, Lindberg P, Pinto F, Tsygankov A. 2002. Photoproduction of H2 by wildtype Anabaena PCC 7120 and a hydrogen uptake deficient mutant: From laboratory experiments to outdoor culture.International Journal of Hydrogen Energy 27: 1271-1281.


Liu Y, Xu HL, Yang SF, Tay JH. 2003. Mechanisms and models for znaerobic granulation in upflow anaerobic sludge blanket reactor. Water Res 37: 661-673.

Liu, X., Zhu, Y., and Yang, S.T. 2006. Butyric Acid and Hydrogen Production by Clostridium tyrobutyricum ATCC 25755 and Mutants. Enzyme and Microbial Technology 38: 521-528.

Long MN, Huang JL, Wu XB, Xu HJ, Chen JZ, Long CN, Zhu FZ, Xu LH. 2005. Isolation and characterization of a high H2-producing strain Klebsiella oytoca HP1 from a hot spring. Res Microbiol 156: 76-81.

Lopes Pinto, F.A. Lopes Pinto, O. Troshina and P. Lindblad, 2002. A brief look at three decades of research on cyanobacterial hydrogen evolution, International Journal of Hydrogen Energy 27: 1209-1215.

Ludwig, W., G. Kirchhof, N. Klugbauer, M. Weizenegger, D. Betzl, M. Ehrmann, C. Hertel, S. Jilg, R. Tatzel, H. Zitzelsberger, S. Liebl, M. Hochberger, J. Shah, D. Lane, P.R. Wallnofer, and K.H. Schleifer. 1992. Complete 23S ribosomal RNA sequences of Gram-positive bacteria with low DNA G+C content. Syst. Appl. Microbiol 15: 487-501.

MacLeod FA, Guiot SR, Costerton JW. 1990. Layered structure of bacterial aggregates produced in an upflow anaerobic sludge bed and filter reactor. Appl Environ Microbiol 56: 1598-1607.

Madigan MT, Martinko JM. 2006. Brock—Biology of Microorganisms, 11th edn. Prentice Hall.

Malina JF, Pohland JFG. 1992. Design of anaerobic processes for the treatment of industrial and municipal wastes. Technomic Pub Co. USA.

Mallette MF, Reece P, Dawes EA. 1974. Culture of clostridium pasteurianum in defined medium and growth as a function of sulfate concentration. Appl Microbiol 28(6): 999-1003.

Marounek, M., and S. Bartos. 1987. Interactions between rumen amylolytic and lactate-utilizing bacteria in growth on starch. J. AppI. Bacteriol 63: 233-238.

Milanm, M., Katerina, F., and Stanislav, B., 1989. Metabolism and Some Characteristics of Ruminal Strains of Megasphaera elsdenii. Mar.AppI. Environ. Microbiol 55(6): 1570-1573.
Minnan L, Jinli H, Xiaobin W, Huijuan X, Jinzao C, Chuannan L. 2005. Isolation and characterization of a high H2-producing strain Klebsialla oxytoca HP1 from a hot spring.Res Microbiol;156.

Miyake J, Miyake M, Asada Y. 1999. Biotechnological hydrogen production: research for efficient light energy conversion. J Biotechnol 70: 89-101.

Miyake J. 1998. The science of biohydrogen: An energetic view. In BioHydrogen. Zaborsky, OR Ed. Plenum Press: 7-18.

Miyamoto K. 1997. Renewable biological systems for alternative sustainable energy production. 1st edn. Food and Agriculture Organization of the United Nations.

Muyzer, G., de Waal, E.C., and Uitterlinden, A.G. 1993. Profiling of Complex Microbial Populations by Denaturing Gradient Gel Electrophoresis Analysis of Polymerase Chain Reaction-Amplified Genes Coding for 16S rRNA. Applied and Environmental Mircoblogy 59: 695-700.

Nandi R, Sengupta S. 1998. Microbial production of hydrogen - an overview. Crit Rev Microbiol 24: 61-84.

Naidu AS, Bidlack WR, Clemens RA . 1999. Probiotic spectra of lactic acid bacteria (LAB). Crit Rev Food Sci Nutr 39:13-126.

Nielsen, A.T., Liu, W.-T., Filipe, C., Grady, L., Jr., Molin, S., and Stahl, D.A. 1999. Identification of a Novel Group of Bacteria in Sludge from a Deteriorated Biological Phosphorus Removal Reactor. Applied and Environmental Mircoblogy 65: 1251-1258.

Nochur, S. V., A. L. Demain, and M. F. Roberts. 1992. Carbohydrate utilization by Clostridium thermocellum: importance of internal pH in regulating growth. Enzyme Microb. Technol 14: 338-349.

Olsen, G.J., D.J. Lane, S.J. Giovannoni, N.R. Pace, and D.A. Stahl. 1987. Microbial ecology and evolution: a ribosomal RNA approach. Annu. Rev. Microbiol 40: 337.
Otis, R.J. 2001. Boundary Design: A Strategy for Subsurface Wastewater Infiltration System Design and Rehabilitation. On-Site Wastewater Treatment Procedures: Proceedings of the Ninth National.

Palazzi E, Fabino B, Perego P. 2000. Process development of continuous hydrogen production by Enterobacter aerogenes in a packed column reactor. Bioprocess Eng 22: 205-13.

R. A. Hefner. 1999. Presentation at the 10th Repsol-Harvard Seminar on Energy Policy.

Rachman MA, Nakashimada Y, Kakizono T, Nishio N. 1998. Hydrogen production with high yield and high evolution rate by self-flocculated cells of Enterobacter aerogenes in a packed-bed reactor. Appl Microbiol Biotechnol 49: 450-454.

Ren, N., Li J., Li B., Wang Y., Liu S. 2006. “Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system”, Int. J. Hydrogen Energy 31: 2147-2157.

S. Dunn. 2002. “Hydrogen futures: toward a sustainable energy system,” Hydrogen Energy 27: 235-264.

Saiki Y, Iwabuchi C, Katami A, Kitagawa Y. 2002. Microbial analyses by fluorescence in situ hybridization of well-settled granular sludge in brewery wastewater treatment plants. J Biosci Bioeng 93: 601-606.

Scheifinger C. C., Linehan B., Wolin M. J. 1975. H2 Production by Selenomonas ruminantium in the Absence and Presence of Methanogenic Bacteria. Applid Microbiology 29: 480-483.

Schmidt JE, Ahring BK. 1996. Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors. Biotechnol Bioeng 49(3): 229-246.

Schwartz, R. D. and Keller, F. A. 1982. Acetic acid production by Clostridium thermoacetium in pH-controlled batch fermentation at acidic pH. Appl Environ Microbiol 43: 1385-1392.


Siegrist, R.L. 1987. Hydraulic Loading Rates for Soil Absorption Systems Based on Wastewater Quality.On-Site Wastewater Treatment: Proceedings of the Fifth National Symposium on Individual and SmallCommunity Sewage Systems. ASAE. St. Joseph MI: 232-241.

Smith GD, Ewart GD, Tucker W. 1992. Hydrogen production by cyanobacteria. Int J Hydrog Energy 17: 695-698.

Solomon BO, Zeng AP, Biebl H, Schlieker H, Posten C, Deckwer WD. 1995. Comparison of the energentic efficiencies of hydrogen and oxychemicals formation in Klebsiella pneumoniae and Clostridium butyricum during anaerobic growth on glycerol. Biotechnology 39: 107-117.

Stackebrandt E, Rainey FA. 1997. The Clostridia:Molecular biology and pathogenesis. In the Clostridia : molecular biology and pathogenesis. Rood JI, McClane BA, Songer JG, Titball RW. (eds.): 3-19.

Stahl, D.A., D. J. Lane, G. J. Olsen, and N. R. Pace. 1984. Analysis of hydrothermal vent-assocoated symbionts by ribosomal RNA sequences. Sceience 224: 409.

Stahl, D.A., D. J. Lane, G. J. Olsen, and N. R. Pace. 1985. Characterization of a Yellowstone hot spring microbial community by 5S ribosomal RNA sequence. Appl. Environ. Microbial 49: 1379

Taguchi F, Hasagawa K, Saito-Taki T, Hara K. 1996a. Simultaneous production of xylanase and hydrogen using xylan in batch culture of Clostridium sp. strain X53. J Ferment Bioeng 81: 178-180.

Taguchi F, Yamada K, Hasegawa K, Saito-Taki T, Hara K. 1996b. Continuous hydrogen production by Clostridium sp. No. 2 from cellulose hydrolysate in an aqueous two-phase system. J Ferment Bioeng 82: 80-83.

Takabatake H, Suzuki K, Ko IB, Noike, T. 2004. Characteristics of anaerobic ammonia removal by a mixed culture of hydrogen producing photosynthetic bacteria. Bioresour Technol 95(2): 151-158.



Tanisho S, Kamiya N, Wakao N. 1989. H2 evolution of Enterobacter aerogenes depending on culture pH: mechanism of H2 evolution from NADH by means of membrane-bound hydrogenase. Biochim Biophys Acta 973(1): 1-6.

Tanisho S, Suzuki Y, Wakao N. 1987. Fermentative hydrogen evolution by Enterobacter aerogenes strain E. 82005. Int J Hydrogen Energy 12: 623-627.

Terracciano, J. S., W. J. A. Schreurs, and E. R. Kashket. 1987. Membrance H+ conductance of Clostridium thermoaceticum and Clostridium acetobutylicum: evidencefor electrogenic Na+/H+ antiport in Clostridium thermoaceticum. Appl. Environ.Microbiol 53: 782-786.

Thomas D, Michael T, John M, Jack P. 1994. Biology of Microorganism. Prentice Hall, Auflage: 77-80.

Van Dyke MI, McCarthy AJ. 2002. Molecular biological detection and characterization of clostridium populations in municipal landfill sites. Appl Environ Microbiol 68: 2049-2053.

Vavilin VA, Rytow SV, Lokshina LY. 1995. Modelling hydrogen partial pressure change as a result of competition between the butyricand propionicgroups of acidogenicbacteria. Bioresour Technol 54: 171-177.

Vervaeke, I. J., and P. F. Van Assche. 1975. Occurrence of Megasphaera elsdeni in faecal samples of young pigs. Zentralbl. Bakteriol. Hyg. 1 Abt. Orig. A 231: 145-152.

Viale, A.M., A.K. Arakaki, F.C. Soncini, and R.G. Ferreyra. 1994. Evolutionary relationships among eubacterial groups as inferred from GroEL (chaperonin) sequence comparisons. Int. J. Syst. Bacteriol. 44: 527-533.

Wallace, R. J. 1986. Catabolism of amino acids by Megasphaera elsdenii LC1. AppI. Environ. Microbiol 51: 1141-1143.

Werner, H. 1973. Megasphaera elsdenii-a normal inhabitant of the human intestine? Zentralbl. Bakteriol. Hyg. 1 Abt. Orig. A 223: 343-347.


Woese CR. 1987. Microbiology Reviews. Bacterial Evolution 51: 211-271.

Yan, R. T., C. X. Zhu, C. Golemboski, and J. S. Chen. 1988. Expression of solvent-forming enzymes and onset of solvent production in batch culture of Clostridium butyricum. Appl Environ Microbiol 54: 642–648.

Yokoi H, Maeda Y, Hirose J, Hayashi S, Takasaki Y. 1997. H2 Production by immobilized cells of Clostridium butyricum on porous glass beads. Biotechnol Tech 11: 136-143.

Yokoi H, Mori S, Hirose J, Hayashi S, Takasaki Y. 1998. H2 production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp. M-19. Biotechnol Lett 20: 895-899.

Yokoi H, Ohkawara T, Hirose J, Hayashi S, Takasaki Y. 1995. Characteristics of hydrogen production by aciduric Enterobacter aerogenes strain HO-39. J Ferment Bioeng 80: 571-574.

Zhao Xin, Defeng Xing, Na Fu, Bingfeng Liu, Nanqi Ren. 2011. Hydrogen production by the newly isolated Clostridium beijerinckii RZF-1108. BioTech 102; 8432-8436.

Zhu HQ, Ueda S, Asada Y, Miyake J. 2002. Hydrogen production as a novel process of wastewater treatment-studies on tofu wastewater with entrapped R. sphaeroides and mutagenesis. Int J Hydrogen Energy 27(11-12): 1349-1357.

Zhu HQ, Wakayama T, Asada Y, Miyake J. 2001. Hydrogen production by four cultures with participation by anoxygenic phototrophic bacterium and anaerobic bacterium in the presence of NH4+. Int J Hydrogen Energy 26: 1149-1154.

Zhu Y, Yang ST. 2004. Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum. Journal of Biotechnology 110: 143-157.

Zoutberg GR, Frankin R. 1996. Anaerobic treatment of chemical and brewery waste water with a new type of anaerobic reactor; the Biobed Egsb Reactor. Water Sci Technol 34: 375-381.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top