跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.88) 您好!臺灣時間:2024/12/04 14:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳俊宏
研究生(外文):Jun-Hong Chen
論文名稱:燃燒合成三元碳化物固溶體之研究
論文名稱(外文):Formation of Solid Solutions of Ternary Carbides by Combustion Synthesis
指導教授:葉俊良葉俊良引用關係
指導教授(外文):Chun-Liang Yeh
學位類別:碩士
校院名稱:逢甲大學
系所名稱:航太與系統工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:75
中文關鍵詞:固溶體XRD三元碳化物自持傳遞燃燒合成SEM
外文關鍵詞:SHSSEMSolid SolutionsTernary carbidesXRD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本實驗研究係利用自持傳遞高溫合成法(Self-propagating High-temperature Synthesis, SHS),在氬氣環境下進行燃燒合成三元碳化物固溶體(Ti,Nb)2AlC、(Cr,V)2AlC及Ti3(Al,Si)C2之實驗研究,並觀察不同比例的初始粉末、反應物組態對其火焰鋒面傳遞速度、火焰鋒面傳遞模式、燃燒反應溫度和產物轉換的影響。
實驗結果顯示,在試片的火焰傳遞模式方面,合成(Ti,Nb)2AlC、Ti3(Al,Si)C2時,鋒面傳遞方式皆以一平整方式向下傳遞,而進行合成(Cr,V)2AlC時則與兩者不同,其燃燒鋒面是以一弧狀方式向下傳遞。(Ti,Nb)2AlC以不同反應式合成時,火焰鋒面經過後試片所發生的現象並不相同,但皆會產生融化之現象;合成Ti3(Al,Si)C2之試片在鋒面通過後,試片發生明顯的長高現象;合成(Cr,V)2AlC時,試片在鋒面通過後試片即發生劇烈熔化縮小現象。
在溫度及速度方面,使用純元素合成(Ti,Nb)2AlC時的溫度變化較為緩和,而在反應中添加鋁熱反應後,燃燒溫度明顯的上升,且溫度隨著Ti含量的增加而降低,但降低幅度較不明顯,而其速度則相反,隨著Ti含量的上升而上升,而試片中添加入Al4C3後試片中,其溫度隨著Ti含量增加而降低而速度亦然;而在合成(Cr,V)2AlC時因反應溫度過高,造成試片的劇烈融化,以致無法量測其準確之溫度,而其速度部分,在不添加VC時,反應速度較為平緩,而在試片中添加VC後試片之反應速度較為快速,且其隨著Cr2O3的含量增加而逐漸減慢的現象更為明顯;在添加TiC、SiC與Al4C3於合成Ti3(Al,Si)C2的試片中時,反應速度為添加TiC者反應速度最慢,而添加SiC時,鋒面平均速度與溫度為最高並隨著Al含量增加而增加,而添加Al4C3時反應溫度與速度皆隨著Al含量的增加而減低。
在產物分析方面,於合成(Ti,Nb)2AlC之產物XRD圖中可發現使用純元素進行時,試片之主要繞射鋒值最為明顯且雜質最為稀少,且在微結構方面可看見三元碳化物之層狀排列的主要結構模式;在合成(Cr,V)2AlC時,無添加VC的狀態下繞射鋒值較為明顯,添加VC後反而造成主要繞射鋒值的下降,在其微結構中可看見釵h呈現融溶狀的結構,但依然可看到層狀排列的結構模式;在反應式中添加TiC、SiC及Al4C3進行合成Ti3(Al,Si)C2時,由XRD圖中可觀察到,以添加TiC時擁有最佳的合成率,其微結構狀態呈現為三元碳化物之主要的層狀排列,添加其他兩種碳化物時,產物中固溶體的生成量降低,且主要合成之產物改變為TiC與SiC。
Formation of the solid solutions of ternary carbides (Ti,Nb)2AlC, (Cr,V)2AlC, and Ti3(Al,Si)C2, was conducted by self-propagating high-temperature synthesis (SHS). For the preparation of (Ti,Nb)2AlC, three reactant mixtures composed of Ti-Nb-Al-C, Ti-Nb2O5-Al-C, and Ti-Nb2O5-Al-Al4C3 were adopted. The solid solution of (Cr,V)2AlC was synthesized from the powder compacts of Cr2O3-V2O5-Al-C and Cr2O3-V2O5-Al-C-VC. The TiC-, SiC-, and Al4C3-added samples were used to produce Ti3(Al,Si)C2. The effect of sample stoichiometry was studied on the product composition and morphology, combustion wave velocity, and reaction temperature.
The combustion process proceeded with a self-sustaining reaction front. For the reactant compacts of Ti-Nb-Al-C and Ti-Nb2O5-Al-C, the increase of Ti content in (Ti,Nb)2AlC increased the combustion velocity. Although the reversed trend was observed for the samples composed of Ti-Nb2O5-Al-Al4C3, the combustion velocity and temperature of the Ti-Nb2O5-Al-Al4C3 sample were higher than those of the Ti-Nb-Al-C and Ti-Nb2O5-Al-C powder compacts. The reaction front velocity was almost independent of the initial composition of the Cr2O3-V2O5-Al-C samples. With the addition of VC, the combustion velocity decreased with Cr content in the product (Cr,V)2AlC. On account of the variation of reaction exothermicity with sample stoichiometry, it was found that with an increase in the Al content of as-synthesized Ti3(Al,Si)C2 the combustion temperature and reaction front velocity decreased moderately for the TiC-added sample but substantially for the sample adopting Al4C3. However, a significant increase in both combustion wave temperature and velocity was observed for the SiC-added sample.
The XRD analysis indicates that in addition to the dominant phase (Ti,Nb)2AlC, there are secondary phases TiC, NbC, NbAl3, and Nb2Al. The optimal product was obtained from the Ti-Nb-Al-C sample. For the formation of (Cr,V)2AlC, the binary carbide Cr7C3 was detected as the minor phase and the optimal composition of the product was obtained from the sample without addition of VC. On the synthesis of Ti3(Al,Si)C2, the final products contain TiC as a second phase and some other minor species like SiC and Ti3Al. For the Al4C3-added samples, however, the resulting products are dominated by TiC. According to the experimental evidence, the TiC-containing sample is the most favorable for the preparation of Ti3(Si,Al)C2 through the SHS process.
封面內頁
授權書
誌謝………………………………………………………………………….I
摘要………………………………………………………………………...III
ABSTRACT………………………………………………………………...V
目錄……………………………………………………………………..…VII
表目錄…………………………………………………………………...…XI
圖目錄……………………………………………………………………..XII

第一章 緒論……………………...……………………...…………………1
1. 1 研究背景….……………………………………………………...…1
1. 2 三元化合物及固溶體之文獻回顧……….………………………...5
1. 2. 1 (Ti,Nb)2AlC之相關文獻………...……………………………..6
1. 2. 2 (Cr,V)2AlC之相關文獻…………………………...…………...7
1. 2. 3 Ti3(Al,Si)C2之相關文獻……..…………...…….....…………...8
1. 3 研究目的…………………………..……………….………..………9
第二章 研究方法……….…………...…………..……………..…………11
2. 1 試片配置.……………………………..………………...…………11
2. 1. 1 燃燒合成固溶體(Ti,Nb)2AlC之試片配置………..….………11
2. 1. 2 燃燒合成固溶體(Cr,V)2AlC之試片配置……...........……….12
2. 1. 3 燃燒合成固溶體Ti3(Al,Si)C2之試片配置….………...…...…13
2. 2 燃燒室主體…………..………………………...…………………..14
2. 3 資料擷取系統……….…………………………………………..…15
2. 4 影像擷取系統……….…………………………………………..…15
2. 5 產物分析…………….…………………………………………..…16
第三章 結果與討論…………………………………….………………...17
3. 1 燃燒合成固溶體(Ti,Nb)2AlC…………………………...…….......17
3. 1. 1 燃燒火焰觀察……………...………………...…….…………17
3. 1. 2 燃燒溫度量測…………………………………...……………18
3. 1. 3 火焰鋒面傳遞速度……………………………...……………19
3. 1. 4 產物分析與微結構觀察………………………...……………20
3. 2 燃燒合成固溶體(Cr,V)2AlC…………………………...…………21
3. 2. 1 燃燒火焰觀察…………………………...……………………21
3. 2. 2 火焰鋒面傳遞速度………...…………………………………22
3. 2. 3 產物分析與微結構觀察……………...………………………23
3. 3 燃燒合成固溶體Ti3(Al,Si)C2之結果討論….……………….……24
3. 3. 1 燃燒火焰觀察………………………………...………………24
3. 3. 2 燃燒溫度量測…………………………………………….......25
3. 3. 2 火焰鋒面傳遞速度…………………………...………………26
3. 3. 3 產物分析與微結構觀察…………………...…………………27
第四章 結論………………………………………………………………29
參考文獻…………………………………………………………………...34
1.陳文照,曾春風,游信和,材料科學工程,高立圖書有限公司,2000
2.A. G. Merzhanov, “History and recent in SHS,” Ceramics International, Vol. 21, pp. 371-379, 1995.
3.J. P. Lebrat, Ph. D thesis, Univ of Nniv. of Notre Dame, 1992.
4.A. Varma, J. P. Lebrat, “Combustion synthesis of advanced materials,” Chemical Engineering Science, Vol. 47, pp. 2179-2194, 1992.
5.D. Luss, “Reaction engineering of advanced ceramic materials,” Chemical Engineering Science,Vol. 45, pp. 1979-1999, 1990.
6.Z. A. Munir, J. B. Holt, “Combustion and Plasma Synthesis of High Temperature Material,” VCH Publish, New York, 1990.
7.朱世富,材料科學與工程,新文京開發出版有限公司,2002
8.L. L. Wang, Z. A. Munir, Y. M. Maximov, “Review thermite reactions: their utilizationsynthesis and processing of materials in the synthesis and processing of materials,” Journal of Materials Science, Vol. 28, pp. 3693-3708, 1993.
9.J. Mei, R.D. Halldearn, P. Xiao, “Mechanisms of the aluminium-iron oxide thermite reaction,” Scripta Materialia, Vol. 41, pp. 541-548, 1999.
10.M. W. Barsoum, “The MN+1AXN Phases: a new class of solids; thermodynamically stable nanolaminates,” Progress in Solid State Chemistry,Vol. 28, pp. 201-281, 2000.
11.朱教群,梅炳初,陳艷林,具有良好金屬性能的層狀三元碳化物和氮化物,中國有色金屬學報,2001
12.T. H. Scabarozi, C. Gennaoui, J. Roche, T. Flemming, K. Wittenberger, P. Hann, B. Adamson, A. Rosenfeld, M. W. Barsoum, J. D. Hettinger, and S. E. Lofland, ”Combinatorial investigation of (Ti1-xNbx)2AlC,” Applied Physics Letters. Vol. 95, pp. 101907, 2009.
13.C.L. Yeh, Y.G. Shen, “Effects of TiC and Al4C3 addition on combustion synthesis of Ti2AlC,” Journal of Alloys and Compounds, Vol. 470, pp. 424–428, 2009.
14.C.L. Yeh, C.W. Kuo, “An investigation on formation of Nb2AlC by combustion synthesis of Nb2O5–Al–Al4C3 powder compacts,” Journal of Alloys and Compounds. Vol. 496, pp. 566–571, 2009.
15.I. Salama, T. El-Raghy, M.W. Barsoum, “S ynthesis and mechanical properties of Nb2AlC and (Ti,Nb)2AlC,” Journal of Alloys and Compounds, Vol. 347, pp. 271-278, 2002.
16.C.L. Yeh, C.W. Kuo, “Effects of Al and Al4C3 contents on combustion synthesis of Cr2AlC from Cr2O3–Al–Al4C3 powder compacts,” Journal of Alloys and Compounds, Vol. 509, pp. 651–655, 2011.
17.D. P . Sigumonrong, J. Zhang, Y. Zhou, D. M. Jochen M Schneider, “Synthesis and elastic properties of V2AlC thin films by magnetron sputtering from elemental targets,” Journal of Physics D: Applied Physics, Vol. 42, pp.185408, 2009.
18.W. B. Tian, Z. M. Sun, H. Hashimoto, Y. L. Du, “Synthesis, microstructure and properties of (Cr1-xVx)2AlC solid solutions,” Journal of Alloys and Compounds, Vol. 484, pp. 130–133, 2009.
19.C.L. Yeh , Y.G. Shen, “Effects of using Al4C3 as a reactant on formation of Ti3AlC2 by combustion synthesis in SHS mode,” Journal of Alloys and Compounds, Vol. 458, pp. 286–291, 2008.
20.J.J. Moore, H.J. Feng, “Combustion synthesis of advanced materials : part I. reaction parameters,” Progress in Materials Science,Vol.39, pp. 243-473, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊