跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/08 10:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳嘉健
研究生(外文):Chia-Chien Chen
論文名稱:Alpha型史特靈引擎最佳化分析
論文名稱(外文):Optimal Analysis of an Alpha-Type Stirling Engine
指導教授:王正賢王正賢引用關係李永明李永明引用關係
指導教授(外文):Jean-Shyan WangYung-Ming Lee
學位類別:碩士
校院名稱:逢甲大學
系所名稱:航太與系統工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:95
中文關鍵詞:史特靈引擎最佳化田口方法
外文關鍵詞:OptimizationTaguchi methodStirling Engine
相關次數:
  • 被引用被引用:3
  • 點閱點閱:347
  • 評分評分:
  • 下載下載:45
  • 收藏至我的研究室書目清單書目收藏:0
本文應用田口方法導入Alpha型史特靈引擎指示必v最佳化模擬分析,分析參數包含加熱溫度、轉速、再生器多孔率、膨脹室缸徑、壓縮室缸徑、膨脹室活塞衝程以及壓縮室活塞衝程。訂定品質特性為引擎指示必v與選定理想機能為望大特性,實驗設計之直交表為田口式L18直交表,由數值實驗結果可求得控制因子影響力大小,並決定最佳設計之因子組合,透過變異數分析法探討各項因子之重要性,預測最佳組合與原始組合之S/N比,分析結果預測值與實際值誤差率約8%。
最後針對最佳設計之分析數據進行探討,並與原始設計分析之結果相互比較,結論為引擎指示必v由4.37W提升至6.43W,確實提高引擎指示必v。
Taguchi Method is used to optimize the indicated power of an alpha-type Stirling Engine. Parameters of simulation include temperature of hot end, rotational speed, the porosity of the regenerator, cylinder bore diameter of expansion space, cylinder bore diameter of compression space, piston stroke length of expansion space and piston stroke length of compression space. The indicated power is the quality characteristics and the ideal function is the larger the better. Taguchi’s orthogonal array used in this experiment is L18 orthogonal array. The influence of the control factors and the optimal set of the control factors can be determined by the numerical experiments. The importance of each factor and the S/N ratio between the predicted experiments and the original experiments can be investigated by the analysis of variance. The difference of the S/N ratio between predicted experiment and confirmation experiment is around 8%.
Finally, the numerical simulation of the optimal design compares with the results of original design. The indicated power for the optimal engine increases from 4.37W to 6.43W. It does improve the performance of the original engine.
目錄
摘要 i
Abstract iii
目錄 iv
圖目錄 vii
表目錄 x
符號說明 xi
第一章 前言 1
1.1 研究背景 1
1.2 研究的重要性 2
1.3 相關文獻回顧 3
1.4 論文內容 10
第二章 史特靈引擎介紹 11
2.1 史特靈引擎發展史概論 11
2.2 史特靈循環 12
2.3 史特靈引擎型式 13
2.4 史特靈引擎優點 15
2.5 史特靈引擎子系統 16
第三章 數值方法與基本假設 25
3.1 基本假設 25
3.2 統御方程式 26
3.3 數值模型說明 29
3.3.1 數值模型建構 29
3.3.2 邊界與起始條件 32
第四章 田口實驗設計法 44
4.1 實驗設計法 44
4.2 田口設計實驗法步驟 46
4.3 信號雜訊比 49
4.4 變異數分析 51
第五章 結果與討論 59
5.1 田口實驗分析 59
5.1.1 指示必v分析 59
5.1.2 變異數分析 60
5.1.3 最佳化結果討論 61
5.1.4 確認實驗 63
5.2 數值模擬結果與討論 64
5.2.1 最佳化結果討論 64
5.2.2 原始設計與最佳設計討論 66
第六章 結論與未來目標 89
6.1 結論 89
6.2 未來目標 90
參考文獻 92
ANSYS, Inc., 2009, ANSYS FLUENT User’s Guide, ANSYS, Inc.
Berchowitz, D. M., 1993, “Free Piston Rankine Compression and Stirling Cycle Machines for Domestic Refrigeration,” Greenpeace Ozon Safe Conference, Washington DC, USA.
Bowman, L., 2001, “Small modular power development at External Power, LLC: Residential and small commercial Stirling cogeneration system,” Fifth International Biomass Congress of the Americas, Orlando, USA.
Cengel, Y. A., and Boles, M. A., 2006, Thermodynamics – An Engineering Approach, 5th ed, McGraw Hill.
Corria, M. E., Cobas, V. M., and Lora, E. S., 2006, “Perspectives of Stirling engines use for distributed generation in Brazil,” Energy Policy, Vol. 34, pp. 3402-3408.
Cha, J. S., Ghiaasiaan, S. M., and Kirkconnell, C. S., 2008, “Longitudina Hydraulic Resistance Parameters of Cryocooler and Stirling Regenerators in Periodic Flow,” Cryogenic Engineering Conference, Vol. 53, pp. 259-266.
Chang, K. Y., Lin, H. J., and Chen, P. C., 2009, “The Optimal Performance Estimation for an Unknown PEMFC Based on the Taguchi Method and a Generic Numerical PEMFC Model,” International Journal of Hydrogen Energy, Vol.34, pp. 1990-1998.
Chan, C. C., Hsu, W.C., Chang, C. C., and Hsu, C. S., 2010, “Preparation and Characterization of Gasochromic Pt/WO3 Hydrogen Sensor by using the Taguchi Design Method,” Sensors and Actuators B: Chemical , Vol.145, pp. 691-697.
Cheng, C. H., and Yu, Y. J., 2010, “Numerical Model for Predicting Thermodynamic Cycle and Thermal Efficiency of a Beta-Type Stirling Engine with Rhombic-Drive Mechanism,” Renewable Energy, Vol. 35, pp. 2590-2601.
Cheng, C. H., and Yu, Y. J., 2011, “Dynamic Simulation of a Beta-Type Stirling Engine with Cam-Drive Mechanism via the Combination of the Thermodynamic and Dynamic Models,” Renewable Energy, Vol. 36, pp. 714-725.
Darlington, R., and Strong, K., 2005, Stirling and Hot Air Engines – Designing and Building Experimental Model Stirling Engines, The Crowood Press Ltd.
Dyson, R. W., Geng, Wilson, S. D., S. M., Tew, R. C., and Demko, R., 2005, “Stirling Analysis Comparison of Commercial Versus High-Order Methods,” Engineering Applications of Computation Fluid Mechanics, Vol. 2, pp. 95-118.
Dyson, R. W., Geng, S. M., Tew, R. C., and Adelino, M., 2008, “Towards Fully 3-D Virtual Stirling Convertors for Multi-Physics Analysis and Optimization,” Engineering Applications of Computation Fluid Mechanics, Vol. 2, pp. 95-118.
Eid, E., 2008, “Performance of a Beta-Configuration Heat Engine Having a Regenerative Displacer,” Renewable Energy, Vol. 34, pp. 2404-2413.
Ganapathy, T., Murugesan, K., and Gakkhar, R. P., 2009, “Performance Optimization of Jatropha Biodiesel Engine Model using Taguchi Approach,” Applied Energy, Vol.86, pp. 2476-2486.
Hargreaves, C. M., 1991, The Philips Stirling Engine, Elsevier, New York.
Ibrahim, M. B., Zhang Z., and Kembhavi, S., 2011, “A 2-D Axisymmetric CFD Model of Oscillatory Flow with Separation,” 37th lntersociety Energy Conversion Engineering Conference, Paper No.20121.
Kongtragool, B., and Wongwise, S., 2003, “A Review of Solar-Powered Stirling Engines and Low Temperature Differential Stirling Engines, ” Renewable and Sustainable Energy Reviews, Vol. 7, pp.131-154.
Kongtragool, B., and Wongwises, S., 2006, “Thermodynamic Analysis of a Stirling Engine Including Dead Volumes of Hot Space, Cold Space and Regenerator,” Renewable Energy, Vol. 31, pp. 345-359.
Kaplan, Z., Novotny, P., and Pistek, V., 2010, “Virtual Design of Stirling Engine Combustion Chamber,” Recent advances in mechatronics, Part4, pp. 317-322.
Lee, H. H., 2011, Taguchi Methods: Principles and Practices of Quality Design, Gau Lih Book Co. Ltd., Taipei, Taiwan.
McKenna, J. J., 2003, “Game Changer: Stirling Engines at Landfills, Landfill Methane Outreach Program,” 6th Annual Conference and Project Expo.
Mahkamov, K., 2006a, “An Axisymmetric Computational Fluid Dynamics Approach to the Analysis of the Working Process of a Solar Stirling Engine,” Journal of Solar Energy Engineering, Vol.128, pp. 45-53.
Mahkamov, K., 2006b, “Design Improvements to a Biomass Stirling Engine Using Mathematical Analysis and 3D CFD Modeling,” Journal of Solar Energy Engineering, Vol.128, pp. 203-214.
Novotny, P., and Pistek, V., 2010, “500W Stirling Engine Development,” Recent advances in mechatronics, Part4, pp. 323-328.
Ozdemir, C., Akin, A. N., and Yildirim, R., 2004, “Low Temperature CO Oxidation in Hydrogen Rich Streams on Pt-SnO2/Al2O3 Catalyst using Taguchi Method ,” Applied Catalysis A: General, Vol.258, pp. 145-152.
Onovwiona, H. I., 2006, “Residential Cogeneration Systems_Review of The Current Techology,” Renewable and Sustainable Energy Reviews, Vol. 10, pp. 389-431.
Puech, P., and Tishkova, V., 2011, “Thermodynamic Analysis of a Stirling Engine Including Regenerator Dead Volume,” Renewable Energy, Vol. 36, pp. 872-878.
Taguchi, G., Chowdhury, S., and Wu, Y., 2005, Taguchi’s Quality Engineering Handbook, John Wiley & Sons, Inc.
Tabakolpour, A. R., Zomorodian, A., and Golneshan, A. A., 2008, “Simulation, Construction and Testing of a Two-Cylinder Solar Stirling Engine Powered by a Flat-Plate Solar Collector without Regenerator,” Renewable Energy, Vol. 33, pp. 77-87.
Timoumi Y., Tlili I., and Nasrallah S.B., 2008, “Design and Performance Optimization of GPU-3 Stirling Engines,” Energy, Vol. 33, pp. 1100-1114.
Walker, G., 1973, Stirling-Cycle Machines, Oxford University Press.
Yang, W. H., and Tarng, Y. S., 1998, “Design Optimization of Cutting Parameters for Turning Operations Based on the Taguchi Method,” Journal of Meterials Processing Technology, Vol.84, pp. 122-129.
劉智豪,2003年,整合熱流與機構動態分析之電腦輔助軟體於史特靈引擎分析設計,大同大學機械工程研究所。
李明璋,2009年,Gamma型態史特靈引擎之數值分析,淡江大學機械與機電工程學系。
廖揚旭,2010年,V型Alpha史特靈引擎振動分析與機構設計,逢甲大學航太與系統工程學系。
郭凱琳,2009年,γ-type史特靈引擎性能模擬與內部流場分析,國立中興大學機械工程學系所。
謝佩君,2010年,史特靈引擎最佳化再生通道研究與分析,國立台灣海洋大學輪機工程系
朱家葆,2010年,Alpha型史特靈引擎熱流場與流固耦合模擬分析,逢甲大學航太與系統工程學系。
施長江,2004年,史特靈引擎菱形驅動結構之機構設計與熱流分析,大同大學機械工程研究所。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top