跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:8e11:74e4:2207:41a8) 您好!臺灣時間:2025/01/15 17:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張耀邦
研究生(外文):Yao-pang Chang
論文名稱:邊界元素法應用於異向介質臨近邊界之溫度分析
論文名稱(外文):Boundary Element Analysis for the Interior Thermal Field near the Boundary
指導教授:夏育群夏育群引用關係
指導教授(外文):Yui-Chuin Shiah
學位類別:碩士
校院名稱:逢甲大學
系所名稱:航太與系統工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:125
中文關鍵詞:二維立方體全自動計算方法近似奇異積分二維立方體
外文關鍵詞:nearly singular integralTwo-Dimensional Cubaturer2d2lri
相關次數:
  • 被引用被引用:0
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
近年來所發展之高性能複材,常採用全異向物性材料作為加強結構之方法。而在分析超薄物件時,最常見的問題便是內部熱傳導問題。邊界元素法分析超薄物件內之熱傳時,由於源點太靠近被積函數(D>>L)(圖1.4),熱傳導之邊界積分式會產生近似奇異積分現象。過去文獻中,邊界元素法已運用分部積分將積分式正規化,以解決二維熱傳導問題。而三維熱傳導問題,在本篇論文將以參考文獻【16】之理論,將近似奇異積分視為瑕積分,以非線性轉換的方式處理被積函數奇異性的問題。此法的好處,可同時解決奇異積分以及近似奇異積分的問題。本研究以MathCAD為驗證工具,將界元素法之FORTRAN程式碼連結由Ian Robinson & Michael Hill【16】兩位學者所撰寫之C++程式碼,用以分析介質內部接近邊界之溫度場分佈。此外,為驗證分析結果之正確,並採用有限元素法之套裝軟體ANSYS做分析比對。
In recent years, generally anisotropic materials have been extensively applied to reinforce the strength of structures. The common problem is the treatment of the thermal field in thin structures. When analyzing the thermal field inside thin media, the boundary element method shall have a problem of “nearly singular integral” due to the source point too that are too close to the boundary. In the past, the scheme of integration by parts has been applied for regularizing the integrands for the problem of 2D heat conduction. For the 3D anisotropic heat conduction, this thesis employs the scheme developed by Robinson and Hill【16】using nonlinear transformation to resolve the problem of nearly singular integral, treated as an improper integral. An additional advantage of such an approach is that the scheme also applies to evaluating singular integrals when the source point lies on the element under integration. With verification by MathCAD, this thesis proposes a methodology analyzing the thermal field near the boundary of an 3D anisotropic medium by linking the FORTRAN program of BEM with the C++ code developed by Robinson and Hill【16】. Also, for further verification of the BEM results, the sample problems have been analyzed by means of ANSYS for comparison.
目錄
致謝 I
摘要 II
目錄 IV
圖目錄 VI
表目錄 IX
第一章 導論 1
1.1 前言 1
1.2 研究動機 2
1.3 文獻回顧 3
第二章 理論回顧 9
2.1 3-D 多域異向熱傳導理論 9
2.2 BEM 之映射域論述 14
2.3 r2d2lri:二維立方體全自動計算方法 18
第三章 邊界溫度場與溫度梯度之邊界積分 21
3.1 溫度平面與曲線元素邊界積分式 21
3.1.1溫度平面元素邊界積分式 31
3.1.2 溫度曲面元素邊界積分式 33
3.2溫度梯度平面與曲面元素邊界積分式 35
第四章 內部溫度場與溫度梯度之邊界積分整理 41
4.1 內部溫度邊界積分整理 41
4.2 內部溫度梯度邊界積分整理 48
第五章 數值範例 55
5.1 範例一 熱傳之統御方程式-驗證平面元素奇異性現象 55
5.2 範例二 熱傳之統御方程式-驗證曲面元素奇異性現象 61
5.3 範例三 67
5.4 範例四 69
第六章 結論與未來展望 121
參考文獻 123
參考文獻
【1】Banerjee PK, Butterfield R. Boundary element methods in engineering science. Maidenhead: McGraw-Hill; 1981
【2】Shyang-ho Chi, Yen-Ling Chung, “Cracking in coating–substrate composites with multi-layered and FGM coatings”, Engineering Fracture Mechanics 70, 2003, 1227–1243
【3】J.H. Lau and Yi-Hsin Pao, “Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies”, McGraw-Hill, pp. 123-125
【4】Gipson, G. S. and Camp, C. V., “Effective use of Monte Carlo Quadrature for body force integrals occurring in integral form of elastostatics”, Proc. 7th Int. Conf. On Boundary Elements, pp. 17-26, 1985.
【5】Camp, C. V. and Gipson, G. S., Boundary element analysis of nonhomogeneious biharmonic phenomena, Springer-Verlag, Berlin, 1992.
【6】Lachat, J. C., “Further development of the boundary integral technique for elastoelastics”, Ph.D. Thesis, Southampton University, 1975.
【7】Deb, A. and Banerjee, P. K., “BEM for general anisotropic 2D elasticity using particular integrals”, Commun. Appl. Num. Meth., Vol. 6, pp. 111-119, 1990.
【8】Shiah, Y. C. and Tan, C. L.,“Exact Boundary Integral Transformation of the Thermoelastic Domain Integral in BEM for General 2D Anisotropic Elasticity”, Journal of Computational Mechanics, Vol. 23, pp. 87-96, June 1998.
【9】Shiah, Y. C. and Tan, C. L., “Determination of Interior Point Stresses in Two Dimensional BEM Thermoelastic Analysis of Anisotropic Bodies”,International Journal of Solids and Structures, Vol. 37, pp. 809-829, Nov. 1999.
【10】Cruse, T. A. “Boundary Element Analysis in Computational Fracture Mechanics. ” Dordrecht, Boston, Kluwer Academic Publishers, 1988.
【11】Krishnasamy, G.; Rizzo, F. J., Liu, Y. J. “Boundary integral equation for thin bodies.” International Journal for Numerical Methods in Engineering. Vol. 37, pp.107-121, 1944.
【12】Barbara M. Johnston, Peter R. Johnston “A modified non-linear transformation method for evaluating weakly singular boundary integrals ” Applied Mathematics and Computation Vol.148, pp.519–535, 2004.
【13】Peter R. Johnston, David Elliott “A generalisation of Telles’ method for evaluating weakly singular boundary element integrals ” Journal of Computational and Applied Mathematics Vol.131, pp.223–241, 2001.
【14】J.D. Richardson and T.A. Cruse “Weakly singular stress-BEM for 2D elastostatics ” Int. J. Numerical Methods in Engineering, Vol.45, pp.13-35, 1999.
【15】林英徹”超薄異向材料熱效應之邊界元素法分析”,逢甲大學航太與系統工程學系研究所碩士論文,中華民國94年6月(夏育群教授指導)
【16】IAN ROBINSON and MICHAEL HILL, “r2d2lri:An Algorithm for Automatic Two-Dimensional Cubature”.
【17】Y.C.Shiah,andC.L. Tan*,”BEM treatment of two-dimensional anisotropic Field problems by direct domain mapping”
【18】Y. C. Shiah, C. L. Tan, “BEM Treatment of Three Dimensional Anisotropic Field Problems by Direct Domain Mapping,” Engineering Analysis with Boundary Elements, Vol. 28, pp. 43-52, 2004. (SCI Impact Factor 1.000, 12/61)
【19】Luo, J.F., Liu, Y.J., and Berger, E.J., ”Analysis of two-dimensional thin structures (from micro- to nano-scales) using the boundary element method”, Computational Mechanics, Vol. 22, pp.404-412, 1998.
【20】Y. C. Shiah and Yi-Xiao Shi, “Anisotropic Heat Conduction across an Interface Crack/Defect Filled with a Thin Interstitial Medium,” Engineering Analysis with Boundary Elements, Vol. 30, No.5, May 2006. (SCI Impact Factor 1.000, 12/61)
【21】施宜孝”邊界元素法分析異向熱傳導問題之近似奇異積分處理”,逢甲大學航太與系統工程學系研究所碩士論文,中華民國95年7月(夏育群教授指導)
【22】Segerlind, L. J., “Applied Finite Element Analysis”, John Wiley, New York, 1984
【23】Y.C.Shiah,Ruey-BinYang and Po-WenHwang, “Heat Conductionin Dissimilar Anisotropic Media with Bonding Defects/Interface Cracks”,Taichung,Taiwan,R.O.C”
【24】Poon KC, Tsou RCH, Chang YP. Solution of anisotropic problems of first class by coordinate transformation. Journal of Heat Transfer 1979;101:340–5
【25】SIDI, A, 1993. A new variable transformation for numerical integration. International Series of Numerical Mathematics 112, 359-373
【26】Berntsen, J., Espelid, T. O., and Genz, A. C. 1991. An adaptive algorithm for the approximate calculation of multiple integrals. ACM Trans. Math. Soft. 17,4,437-451
【27】Cools, R., Laurie, D., and Pluym, L. 1997. Algorithm 764: Cubpack++: A C++ Package for automatic two-dimensional cubature. ACM Trans. Math. Soft. 23, 1, 1-15.
【28】Robinson, I. and De Doncker, E. 1981. Algorithm 45: Automatic computation of improper integrals over a bounded or unbounded planar region. Computing 27,253-284
【29】Kahan, W. 1965. Further remarks on reducing truncation errors. Comm. ACM, 8,40.
【30】Higham, N. J. 1993. The Accuracy of Floating Points Summation. SIAM J. Sci. Comp. 14,4,783-799
【31】Hill, M. and Robinson, I. 1999. d2lri: A non-adaptive algorithm for two-dimensional cubature. J.Comput. Appl. Math 112, 189-200.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top