參考文獻
【1】Banerjee PK, Butterfield R. Boundary element methods in engineering science. Maidenhead: McGraw-Hill; 1981
【2】Shyang-ho Chi, Yen-Ling Chung, “Cracking in coating–substrate composites with multi-layered and FGM coatings”, Engineering Fracture Mechanics 70, 2003, 1227–1243
【3】J.H. Lau and Yi-Hsin Pao, “Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies”, McGraw-Hill, pp. 123-125
【4】Gipson, G. S. and Camp, C. V., “Effective use of Monte Carlo Quadrature for body force integrals occurring in integral form of elastostatics”, Proc. 7th Int. Conf. On Boundary Elements, pp. 17-26, 1985.
【5】Camp, C. V. and Gipson, G. S., Boundary element analysis of nonhomogeneious biharmonic phenomena, Springer-Verlag, Berlin, 1992.
【6】Lachat, J. C., “Further development of the boundary integral technique for elastoelastics”, Ph.D. Thesis, Southampton University, 1975.
【7】Deb, A. and Banerjee, P. K., “BEM for general anisotropic 2D elasticity using particular integrals”, Commun. Appl. Num. Meth., Vol. 6, pp. 111-119, 1990.
【8】Shiah, Y. C. and Tan, C. L.,“Exact Boundary Integral Transformation of the Thermoelastic Domain Integral in BEM for General 2D Anisotropic Elasticity”, Journal of Computational Mechanics, Vol. 23, pp. 87-96, June 1998.
【9】Shiah, Y. C. and Tan, C. L., “Determination of Interior Point Stresses in Two Dimensional BEM Thermoelastic Analysis of Anisotropic Bodies”,International Journal of Solids and Structures, Vol. 37, pp. 809-829, Nov. 1999.
【10】Cruse, T. A. “Boundary Element Analysis in Computational Fracture Mechanics. ” Dordrecht, Boston, Kluwer Academic Publishers, 1988.
【11】Krishnasamy, G.; Rizzo, F. J., Liu, Y. J. “Boundary integral equation for thin bodies.” International Journal for Numerical Methods in Engineering. Vol. 37, pp.107-121, 1944.
【12】Barbara M. Johnston, Peter R. Johnston “A modified non-linear transformation method for evaluating weakly singular boundary integrals ” Applied Mathematics and Computation Vol.148, pp.519–535, 2004.
【13】Peter R. Johnston, David Elliott “A generalisation of Telles’ method for evaluating weakly singular boundary element integrals ” Journal of Computational and Applied Mathematics Vol.131, pp.223–241, 2001.
【14】J.D. Richardson and T.A. Cruse “Weakly singular stress-BEM for 2D elastostatics ” Int. J. Numerical Methods in Engineering, Vol.45, pp.13-35, 1999.
【15】林英徹”超薄異向材料熱效應之邊界元素法分析”,逢甲大學航太與系統工程學系研究所碩士論文,中華民國94年6月(夏育群教授指導)【16】IAN ROBINSON and MICHAEL HILL, “r2d2lri:An Algorithm for Automatic Two-Dimensional Cubature”.
【17】Y.C.Shiah,andC.L. Tan*,”BEM treatment of two-dimensional anisotropic Field problems by direct domain mapping”
【18】Y. C. Shiah, C. L. Tan, “BEM Treatment of Three Dimensional Anisotropic Field Problems by Direct Domain Mapping,” Engineering Analysis with Boundary Elements, Vol. 28, pp. 43-52, 2004. (SCI Impact Factor 1.000, 12/61)
【19】Luo, J.F., Liu, Y.J., and Berger, E.J., ”Analysis of two-dimensional thin structures (from micro- to nano-scales) using the boundary element method”, Computational Mechanics, Vol. 22, pp.404-412, 1998.
【20】Y. C. Shiah and Yi-Xiao Shi, “Anisotropic Heat Conduction across an Interface Crack/Defect Filled with a Thin Interstitial Medium,” Engineering Analysis with Boundary Elements, Vol. 30, No.5, May 2006. (SCI Impact Factor 1.000, 12/61)
【21】施宜孝”邊界元素法分析異向熱傳導問題之近似奇異積分處理”,逢甲大學航太與系統工程學系研究所碩士論文,中華民國95年7月(夏育群教授指導)【22】Segerlind, L. J., “Applied Finite Element Analysis”, John Wiley, New York, 1984
【23】Y.C.Shiah,Ruey-BinYang and Po-WenHwang, “Heat Conductionin Dissimilar Anisotropic Media with Bonding Defects/Interface Cracks”,Taichung,Taiwan,R.O.C”
【24】Poon KC, Tsou RCH, Chang YP. Solution of anisotropic problems of first class by coordinate transformation. Journal of Heat Transfer 1979;101:340–5
【25】SIDI, A, 1993. A new variable transformation for numerical integration. International Series of Numerical Mathematics 112, 359-373
【26】Berntsen, J., Espelid, T. O., and Genz, A. C. 1991. An adaptive algorithm for the approximate calculation of multiple integrals. ACM Trans. Math. Soft. 17,4,437-451
【27】Cools, R., Laurie, D., and Pluym, L. 1997. Algorithm 764: Cubpack++: A C++ Package for automatic two-dimensional cubature. ACM Trans. Math. Soft. 23, 1, 1-15.
【28】Robinson, I. and De Doncker, E. 1981. Algorithm 45: Automatic computation of improper integrals over a bounded or unbounded planar region. Computing 27,253-284
【29】Kahan, W. 1965. Further remarks on reducing truncation errors. Comm. ACM, 8,40.
【30】Higham, N. J. 1993. The Accuracy of Floating Points Summation. SIAM J. Sci. Comp. 14,4,783-799
【31】Hill, M. and Robinson, I. 1999. d2lri: A non-adaptive algorithm for two-dimensional cubature. J.Comput. Appl. Math 112, 189-200.