(3.232.129.123) 您好!臺灣時間:2021/03/06 01:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蘇建誌
研究生(外文):chih-chien su
論文名稱:使用回應表面法最佳化設計可調變高線性轉導放大器
論文名稱(外文):Optimun Design for Tunable Highly Linear MOS Transconductance Amplifier Using Response Surface Method
指導教授:王啟林
指導教授(外文):Chi-Ling Wang
學位類別:碩士
校院名稱:逢甲大學
系所名稱:電子工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:147
中文關鍵詞:轉導放大器回應表面法濾波器基因演算法
外文關鍵詞:Genetic AlgorithmWords:Transconductance AmplifierResponse Surface MethodGm-C Filter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:96
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出回應表面法(Response Surface Method, RSM )最佳化可調變高線性轉導放大器之總諧波失真(Total Harmonic Distortion, THD)與線性輸入範圍(Linear input Voltage Range)。本文電路應用交錯耦合式轉導電路(Cross-Coupled Transconductance Circuit)[4]與控制級電路,並利用共模回授校準器電路(CMFB)[10]與源級隨耦器(Source follower)組合控制結構,本電路利用將共模回授校準電路控制轉導電路的輸出電壓,並改善線性輸入電壓範圍(Linear input voltage Range)與總諧波失真(THD)的特性。
本論文利用回應表面法建構總諧波失真與線性輸入電壓範圍的數學模型,並使用基因演算法(Genetic Algorithm, GA) 找出最佳電晶體寬度與長度,最後探討上述元件對反應目標的影響。本論文採用TSMC 0.35um CMOS 的製程技術實現最佳化可調式轉導放大器,並使用Hspice軟體進行最佳化電路的模擬,於供應電壓為3.3V與輸入訊號頻率10MHz,其總諧波失真(THD)為-52dB,線性輸入電壓範圍為1.43V,平均消耗必v為9mW
The thesis present a Optimization of Tunable Highly Linear MOS Transconductance Amplifier was used Response Surface Method to obtain optimize Total Harmonic Distortion(THD) and Linear Input Voltage Range of the amplifier .The thesis applied Cross-Coupled Transconductor circuit [4] and controlled stage of circuit , Besides the control stage to contain common-mode feedback circuit [10]and source follower. The thesis applied common-mode feedback circuit to contral Transconductance circuit of the output voltage, Moreover to improve the linear input voltage range and total harmonic distortion of characteristics.
This thesis uses Response Surface Method to build the mathematics model of Total Harmonic Distortion and Linear Input Voltage Range , and uses Genetic Algorithm to find the optimum value of transistor’s width.While the input frequency are 10MHz ,The proposed OTA shows THD of bleow -47dB and the Linear Input Voltage Range of 1.43v, We Implement the proposed OTA using TSMC 0.35 μm 2P4M CMOS process under 3.3v supply.
目錄
中文摘要…………………………………………………………………i
英文摘要 ..................................................... ii
致謝 .................................................. iii
目錄 ................................................... iv
圖目錄 ................................................. vi
表目錄 .................................................. x
第一章、緒論 ............................................ 1
1.1研究背景 ............................................. 1
1.2研究動機 ............................................. 3
1.3論文組織 ............................................. 3
第二章、轉導放大器之探討 ............................... 10
2.1 轉導放大器之架構 ................................... 10
2.2.1電阻 .............................................. 10
2.2.1迴轉器(Gyrators) .................................. 10
2.2.3 積分器 ........................................... 10
2.2差動對之非線性問題探討 .............................. 11
2.2.1差動對知非線性項推導 .............................. 12
2.2.2 放大器線性化之技巧 ............................... 13
2.2.3 源極退化 ......................................... 14
2.2.4 電壓浮接式轉導器 ................................. 18
2.2.5 偏壓補償交錯耦合式轉導器 ......................... 26
2.2.6 交叉耦合 ......................................... 30
2.2.7使用不平衡差動對補償 .............................. 32
2.2.8適應性偏壓 ........................................ 34
2.2.9總結 .............................................. 36
2.3 總諧波失真 ......................................... 37
第三章、可調變高線性轉導放大器 ......................... 39
3.1 前言 ............................................... 39
3.2轉導放大器之基本架構 ................................ 40
3.3 轉導器控制級電路 ................................... 44
3.4固定轉導偏壓電路 .................................... 50
3.5模擬結果 ............................................ 52
3.5.1 可調變轉導放大器之模擬結果 ....................... 52
3.5.2 差動對共模回授電路模擬結果 ....................... 57
3.5.3可調變高線性轉導放大器佈局 ........................ 59
第四章、實驗設計法分析流程 ............................. 66
4.1 前言 ............................................... 66
4.1.1田口法 ............................................ 66
4.2回應表面法 .......................................... 69
4.3 實驗設計 ........................................... 70
4.3.1設定因子 .......................................... 71
4.3.2 篩選因子 ......................................... 74
4.3.3建立實驗矩陣 ...................................... 79
4.3.4建立表面回應模型 .................................. 81
4.3.5 加權式組合反應分析 ............................... 81
4.4 殘差分析 ........................................... 83
4.5 樣本散步圖 ......................................... 87
第五章、最佳化設計 ..................................... 88
5.1 基因演算法 ......................................... 88
5.2 基因演算法架構 ..................................... 88
5.3 基因演算法最佳化 ................................... 90
5.4 結果比較與討論 ..................................... 96
第六章、測試設定和量測結果..............................124
6.1直流部分.............................................124
6.2 交流部份............................................125
6.3實測結果.............................................129
6.4討論與結論...........................................130
第七章、結論與未來研究方向 ............................ 132
參考獻 ................................................ 134
[1] Melanie Mitchell, “An Introduction to Genetic Algorithms,” A Bradford Book, 1997.
[2] Shu-Xiang Song; Guo-Ping Yan; Hua Cao,” A highly Linear Wide Range Continuous Tuning CMOS OTA” ASIC International Conference on, pp. 588-591. 2007
[3] E.K.F. Lee and P.G. Gulak, "A transconductor-based field-programmable analog array," in ISSCC Tech. Dig., 1995, pp. 198-199, 366.
[4] Demosthenous and M. Panovic, "Low-voltage MOS linear transconductor / squarer and four-quadrant multiplier for analog VLSI," inProc. of IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 2005, pp. 1721-1731
[5] A.N. Mohieldin and E. Sanchez-Sinencio, "A dual-mode low-pass filter for 802.11b/Bluetooth receiver," in Proc. of the 30th European Applications, 2005, pp. 413-418.
[6] Pennisi, S.Scotti, G. Trifiletti, A.," 150 μA CMOS Transconductor with 82 dB SFDR" Circuits and Systems, 2007. ISCAS 2007. IEEE International Symposium on 2007 , pp.237 - 240
[7] K. Ono, N. Fujii, S. Takagi, and M. Hotta, “Design of low-distortion MOS OTA based on cross-coupled differential amplifier and its application for active filter,” IEICE Trans. Fundament., vol. E77, pp. 363-370, Dec. 1994.
[8] P. Hasler, "Low-power programmable signal processing," in Proc. of 5th International Workshop on System-on-Chip for Real-Time
[9] Y. Deng, S. Chakrabartty, and G. Cauwenberghs, "Three-decade programmable fully differential linear OTA," in Proc. Int. Symp. Circuit and Syst., May 2004, pp.697-700.
[10] Mo M. Zhang, Paul J. Hurst, "Effect of Nonlinearity in the CMFB Circuit that Uses the Differential-Difference Amplifier," IEEE International Symposium on Circuits and Systems, pp. 1390-1393, May. 2006.
[11] Gray Hurst and Lewis Meyer, Analysis and Design of Analog Integrated CircuitsDesign of Analog Filters, 4th ed., John Wiley & Sons, Inc., 2001
[12] D. A. Johns and Ken Martin, Analog Integrated Circuit Design, John Wiley & Sons, Inc., New York, 1997.
[13] E. Seevinck, R.F. Wassenaar, "A versatile CMOS linear transconductor /square-law function," IEEE Journal of Solid-State Circuits, Vol. 22, no.3,1987, pp. 366-377.
[14] C. Toumazou, Lidgey F.J., and D. Haigh, Analogue IC Design: 1. Integrated Circuit.Design & Construction. London, UK: Peter Peregrinus, 1993.
[15] V.C. Gaudet and P.G. Gulak, "A CMOS implementation of a current conveyor-based field-programmable analog array," Conference Record of the Thirty-First Asilomar Conference on Signals, Systems & Computers,1997, pp. 1156-1159.
[16] A. M. Ismail and A. M. Soliman, "Novel CMOS wide-linear-range transconductor amplifier," IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 47, no. 8, pp. 1248-1253, Aug. 2000.
[17] A. Lewinski, and Jose Silva-Martinez, "OTA linearity enhancement
[18] technique for high frequency applications with IM3 below -65 dB," IEEE Trans. Circuits Syst., vol. 51, pp. 126-204, Oct. 2004.
[19] Douglas C. Montgomery原著,黎正中、陳源樹 譯,"實驗設計與分析",高立圖書,民國九十五年,初版二刷
[20] K.F.Man, K.S.Tang, S.Kwong, “Genetic algorithms: concepts and applications,” Industrial Electronics, IEEE Transactions on Volume 43, Issue 5, Oct. 1996, pp. 519-534.
[21] M.Srinivas, L.M.Patnaik, “Genetic algorithms: a survey,” Computer Volume 27, Issue 6, Jun. 1994, pp. 17-26.
[22] T. Georgantas, Y. Papananos and Y. Tsividis, "A comparative study of five integrator structums for monolithic continuous-time filters -a tutorial," in Proc. of IEEE International Symposium on Circuits and Systems, 1993, pp. 1259-1262.
[23] Ko-Chi Kuo and Leuciuc, A “A Linear MOS Transconductor Using Source Degeneration and Adaptive Biasing”Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on Publication Year: 2001 , Page(s): 937 - 943
[24] A. Zeki and H. Kuntman, “Accurate and high output impedance current mirror suitable for CMOS current output stages,” Electron. Lett. , vol. 33, no. 12, pp. 1042–1043, Jul. 1997.
[25] Anadigm, Inc., AN222E04 Data Sheet, 2004.
[26] H. W. Klein, "The EPAC architecture: an expert cell approach to field programmable analog circuits," in Proc. of IEEE 39th Midwest symposium on Circuits and Systems, 1996, pp. 169-172.
[27] F. Krummenacher and N. Joehl, "A 4-MHz CMOS continuous-time filter with on-chip automatic tuning," IEEE Journal of Solid-State Circuits, Vol. 23, no.3, 1988, pp. 750-758.
[28] A. Demosthenous and M. Panovic, "Low-voltage MOS linear transconductor / squarer and four-quadrant multiplier for analog VLSI," inProc. of IEEE Transactions on Circuits and Systems II:Analog and Digital Signal Processing, 2005, pp. 1721-1731
[29] S. Sengupta, "Adaptively biased linear transconductor," IEEE Trans. Circuits Syst., vol. 52, pp. 126-137, Nov. 2005
[30] C. Toumazou, Lidgey F.J., and D. Haigh, Analogue IC Design: 1. Integrated Circuit.Design & Construction. London, UK: Peter Peregrinus, 1993.
[31] D. R. Welland, "A digital read/write channel with EEPR4 detection," IEEE J. Solid-State Circuits, pp. 276-277, Aug. 1994.
[32] I. Yamaguchi, F. Matsumoto and Y. Noguchi, "Technique to improve linearity of transconductor with bias offset voltages controlling a tail current," Electronics Letters, 2005, pp. 1146-1148.
[33] A. Demosthenous and M. Panovic, "Low-voltage MOS linear transconductor / squarer and four-quadrant multiplier for analog VLSI," inProc. of IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 2005, pp. 1721-1731.
[34] Y. Tsividis, Z. Czarnul, and S. C. Fang, "MOS transconductors and integrators with high linearity," Electron. Lett., vol. 22, no. 5, pp. 245-246, June 1986.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔