跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/17 22:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張碩文
研究生(外文):Shuo-Wen Chang
論文名稱:基於LMI適應性智慧型控制之不確定性分數階混沌系統同步化:間接;直接;混合
論文名稱(外文):Uncertain Fractional Order Chaotic System Synchronization Based on Adaptive Intelligent Control via LMI Approach:Indirect;Direct;Hybrid
指導教授:林宗志林宗志引用關係
指導教授(外文):Tsung-Chih Lin
學位類別:碩士
校院名稱:逢甲大學
系所名稱:電子工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:188
中文關鍵詞:同步化區間第二型模糊類神經時間延遲適應性控制混沌系統
外文關鍵詞:LMItime delaychaotic systeminterval type-2 fuzzy logic systemfractional orderadaptive
相關次數:
  • 被引用被引用:0
  • 點閱點閱:200
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討基於LMI適應性智慧型控制之具不確定性分數階混沌系統同步化的問題,結合Lyapunov穩定理論及H∞控制技術進行設計。將使用區間第二型適應性模糊邏輯控制器來處理以下四種不確定性:模糊邏輯系統輸入端、控制輸出端和語言變數的不確定性以及用來學習、調整或使模糊邏輯系統最佳化的訓練資料具雜訊之不確定性。而本文中適應性智慧型模糊控制包含間接適應性模糊控制器、直接適應性模糊控制器及混合適應性模糊控制器;所有控制器又分為兩個主要部分,第一部分為基於分數階混沌系統之適應性模糊邏輯控制,第二部分因為時間延遲往往為使系統不穩定的重要因素,因此對分數階具時間延遲混沌系統進行適應性模糊邏輯控制,其中混合適應性模糊控制器架構為利用一權重因子來結合直接適應性模糊控制器與間接適應性模糊控制器,再依照對於系統特性認知的程度來調整此權重因子,藉以調整直接適應性模糊控制器與間接適應性模糊控制器所應佔的比例,進而同步兩分數階混沌系統。

本文將確保整個閉迴路系統的穩定性,且在雜訊干擾下經模擬結果顯示區間第二型適應性模糊邏輯控制器不管是在同步化效能或是控制力的花費都比第一型適應性模糊邏輯控制器有較好的結果。
This thesis presents an adaptive fuzzy control for uncertain fractional order chaotic system via linear matrices inequality (LMI) approach incorporating Lyapunov stability method with H∞ control to deal with the training data corrupted by noise and rule uncertainties involving external disturbance. The adaptive intelligent fuzzy control which includes direct, indirect and hybrid categories is developed for a class of uncertain fractional order chaotic system synchronization and uncertain fractional order chaotic system with time delay synchronization. The hybrid adaptive fuzzy controller is a combination of direct and indirect adaptive fuzzy controllers. A weighting factor, which can be adjusted by the trade-off between plant knowledge and control knowledge, is adopted to sum together the control efforts from indirect adaptive fuzzy controller and direct adaptive fuzzy controller. Nonlinear fractional chaotic slave system is gully illustrated to track the trajectory generated from fractional order master chaotic system.

The overall adaptive scheme guarantees the global stability of the resulting closed-loop system in the sense that all signals involved are uniformly bounded. Simulation results show that the interval type-2 adaptive fuzzy logic controllers (AFLCs) can effectively handle the training data corrupted by external disturbance, internal noise and rule uncertainties involving external disturbance. Comparing with interval type-2 AFLCs, type-1 AFLCs not only expend more control effort to deal with the training data corrupted by noises but also obtain worse synchronization performance.
目 錄
第一章 緒論 15
1.1研究動機與背景 15
1.2 論文架構 18
第二章 第一型與第二型模糊邏輯系統 19
2.1第一型模糊邏輯系統: 20
2.2第二型模糊邏輯系統: 21
第三章 分數階系統之LMI控制闡述 22
3.1分數階的基本定義 22
3.2分數階之LMI控制器闡述 25
3.3分數階時間延遲系統之LMI控制器闡述 28
3.4線性矩陣不等式闡述 31
第四章 第二型分數階系統之LMI控制設計 33
4.1 第二型分數階系統之LMI控制設計定義 33
4.2第二型分數階系統之LMI間接控制設計 34
4.3第二型分數階系統之LMI直接控制設計 40
4.4第二型分數階系統之LMI混合控制設計 44
第五章 分數階系統之LMI模擬結果 51
5.1分數階系統模擬環境闡述: 51
5.2間接適應性模糊邏輯控制模擬結果 54
5.2.1無內部雜訊間接模糊控制,當分數階系統q=0.98時: 54
5.2.2 SNR=10dB間接模糊控制,當分數階系統q=0.98時: 55
5.2.3無內部雜訊間接模糊控制,當分數階系統q=0.95時: 56
5.2.4 SNR=5dB間接模糊控制,當分數階系統q=0.95時: 57
5.2.5無內部雜訊間接模糊控制,當分數階系統q=0.90時: 58
5.2.6 SNR=5dB間接模糊控制,當分數階系統q=0.90時: 59
5.3直接適應性模糊邏輯控制模擬結果 61
5.3.1無內部雜訊直接模糊控制,當分數階系統q=0.98時: 61
5.3.2 SNR=20dB直接模糊控制,當分數階系統q=0.98時: 62
5.3.3無內部雜訊直接模糊控制,當分數階系統q=0.95時: 63
5.3.4 SNR=15dB直接模糊控制,當分數階系統q=0.95時: 64
5.3.5無內部雜訊直接模糊控制,當分數階系統q=0.90時: 65
5.3.6 SNR=15dB直接模糊控制,當分數階系統q=0.90時: 66
5.4 混合適應性模糊邏輯控制模擬結果 68
5.4.1 a=1混合適應性模糊控制與間接適應性模糊控制模擬 68
5.4.2 a=0混合適應性模糊控制與間接適應性模糊控制模擬 71
5.5混合適應性模糊邏輯控制,當a=0.2模擬結果 74
5.5.1無雜訊 a=0.2混合模糊控制當分數階系統q=0.98時: 74
5.5.2 SNR=20dB a=0.2混合模糊控制分數階系統q=0.98: 75
5.5.3無雜訊 a=0.2混合模糊控制分數階系統q=0.95: 76
5.5.4 SNR=15dB a=0.2混合模糊控制分數階系統q=0.95: 77
5.5.5 無雜訊 a=0.2混合模糊控制分數階系統q=0.90: 78
5.5.6 SNR=15dB a=0.2混合模糊控制分數階系統q=0.90: 79
5.6混合適應性模糊邏輯控制,當 a=0.7模擬結果 80
5.6.1無雜訊 a=0.7混合模糊控制分數階系統q=0.98: 80
5.6.2 SNR=20dB a=0.7混合模糊控制分數階系統q=0.98: 81
5.6.3無雜訊 a=0.7混合模糊控制分數階系統q=0.95: 82
5.6.4 SNR=15dB a=0.7混合模糊控制分數階系統q=0.95: 83
5.6.5無雜訊 a=0.7混合模糊控制分數階系統q=0.90: 84
5.6.6 SNR=15dB a=0.7混合模糊控制分數階系統q=0.90: 85
5.7混合適應性模糊邏輯控制模擬結果數值比較: 86
第六章 分數階具時間延遲之混沌系統同步化 89
6.1 Type-2分數階具時間延遲混沌系統之LMI控制設計定義 89
6.2第二型分數階時間延遲系統之LMI間接控制設計 91
6.3第二型分數階時間延遲系統之LMI直接控制設計 100
6.4 第二型分數階時間延遲系統之LMI混合控制設計 106
第七章 分數階時間延遲系統模擬 118
7.1 分數階時間延遲系統模擬環境闡述: 118
7.2 時間延遲間接適應性模糊邏輯控制模擬結果 121
7.2.1無雜訊時間延遲間接模糊控制分數階系統q=0.97: 121
7.2.2 SNR=20dB時間延遲間接模糊控制分數階系統q=0.97: 122
7.2.3無雜訊時間延遲間接模糊控制分數階系統q=0.95: 123
7.2.4 SNR=15dB時間延遲間接模糊控制分數階系統q=0.95: 124
7.2.5無內部雜訊具時間延遲間接模糊控制,當分數階系統q=0.88時: 125
7.2.6 SNR=15 dB具時間延遲間接模糊控制,當分數階系統q=0.88時: 126
7.3 時間延遲直接適應性模糊邏輯控制模擬結果 133
7.3.1無內部雜訊具時間延遲直接模糊控制,分數階系統q=0.97: 133
7.3.2 SNR=15dB具時間延遲直接模糊控制,當分數階系統q=0.97時: 134
7.3.3無內部雜訊具時間延遲直接模糊控制,當分數階系統q=0.95時: 135
7.3.4 SNR=15dB具時間延遲直接模糊控制,當分數階系統q=0.95時: 136
7.3.5無內部雜訊具時間延遲直接模糊控制,當分數階系統q=0.88時: 137
7.3.6 SNR=15 dB具時間延遲直接模糊控制,當分數階系統q=0.88時: 138
7.4 時間延遲混合適應性模糊邏輯控制模擬前述 144
7.4.1當混合適應性模糊控制為 a=1時 145
7.4.2當混合適應性模糊控制為 a=0時 148
7.5 時間延遲混合適應性模糊邏輯控制當 a=0.2模擬 151
7.5.1無雜訊時間延遲混合模糊控制 a=0.2分數階系統q=0.97: 151
7.5.2 SNR=10dB時間延遲混合模糊控制 a=0.2分數階系統q=0.97: 152
7.5.3無雜訊時間延遲混合模糊控制 a=0.2分數階系統q=0.95: 153
7.5.4 SNR=10dB具時間延遲混合模糊控制 a=0.2,分數階系統q=0.95: 154
7.5.5無雜訊時間延遲混合模糊控制 a=0.2分數階系統q=0.88: 155
7.5.6 SNR=10dB具時間延遲混合模糊控制 a=0.2,分數階系統q=0.88: 156
7.6 時間延遲混合模糊邏輯控制, a=0.7模擬結果 157
7.6.1無雜訊時間延遲混合模糊控制 a=0.7分數階系統q=0.97: 157
7.6.2 SNR=20dB具時間延遲混合模糊控制 a=0.7,分數階系統q=0.97: 158
7.6.3無雜訊時間延遲混合模糊控制 a=0.7分數階系統q=0.95: 159
7.6.4 SNR=15dB具時間延遲混合模糊控制 a=0.7,分數階系統q=0.95: 160
7.6.5無雜訊時間延遲混合模糊控制 a=0.7分數階系統q=0.88: 161
7.6.6 SNR=15dB具時間延遲混合模糊控制 a=0.7,分數階系統q=0.88: 162
7.7混合適應性模糊邏輯控制模擬結果數值比較: 163
參考文獻 181
參考文獻
[1]A.H. Nayfeh, Applied Nonlinear Dynamics, Wiley, New York (1995).
[2]G. Chen and X. Dong, From Chaos to Order: Methodologies, Perspectives and Applications, World Scientific, Singapore (1998).
[3]Tsung-Chih Lin, "Stable Indirect Adaptive Type-2 Fuzzy Sliding Mode Control Using Lyapunov Approach," Innovative Computing, Information and Control , pp. 5725-5748 , 2010-12. (SCI)
[4]Tsung-Chih Lin, Ming-Che Chen, "Adaptive Hybrid Type-2 Intelligent Sliding Mode Control for Uncertain Nonlinear Multivariable Dynamical Systems," Accepted by Fuzzy Sets and Systems , 2010-11.
[5]Tsung-Chih Lin, Ming-Che Chen, Mehdi Roopaei, "Chaos synchronization of uncertain chaotic nonlinear gyros using adaptive hybrid intelligent control," Accepted by Nonlinear studies , 2010-08..
[6]Tsung-Chih Lin, Ming-Che Chen, Mehdi Roopaei, "Synchronization of uncertain chaotic systems based on adaptive type-2 fuzzy sliding mode control," Accepted by Engineering Applications of Artificial Intelligence , 2010-08. (SCI)
[7]Tsung-Chih Lin, Ming-Che Chen, Mehdi Roopaei, Bijan Ranjbar Sahraei, "Adaptive Type-2 Fuzzy Sliding Mode Control for Chaos Synchronization of Uncertain Chaotic Systems," WCCI 2010 IEEE World Congress on Computational Intelligence , pp. 588-595 , 2010-07. (EI,TSSCI)
[8]Kokame, H. Kobayashi, H. and Mori, T. Robust performance for linear delay-differential systems with time-varying uncertainties, pp. 223-226, IEEE Trans. Autom. Contr. 43 (1998).
[9]Ge, J. H., Frank, P. M. and Lin, C. F. Robust state feedback control for linear systems with state delay and parameter uncertainty, pp. 1183-1185, Automatica J.IFAC 32 (1996).
[10]Kamen, E. W. Correction to linear systems with commensurate time-delays: Stability and stabilization independent of delay, pp. 248-249, IEEE Trans. Autom. Contr. 28 (1983).
[11]Mori, T. Criteria for asymptotic stability of linear time-delay systems, pp. 158-161, IEEE Trans. Autom. Contr. 30 (1985).
[12]Mori, T. and Kamen, E. W. Stability of , pp. 460-462, IEEE Trans. Autom. Contr. 34 (1989).
[13]Tsung-Chih Lin Kang-Wei Hsu Valentina Emilia Balas Mehdi Roopaei, "Stable adaptive synchronization of a class of uncertain time-delay chaotic systems via type-2 FNN control," Proceeding of SOFA 2010 ‧ 4th International Workshop on Sof , pp. 237-242 , 2010-07.
[14]Tsung-Chih Lin, Mehdi Roopaei, "Based on Interval Type-2 Adaptive fuzzy Η∞ Tracking Controller for SISO Time-Delay Nonlinear Systems," Communications in Nonlinear Science and Numerical Simulation , 12/15 , pp. 4065-4075 , 2010-05.
[15]B.S. Chen, C.H. Lee, and Y.C. Chang, H∞ Tracking Design of Uncertain Nonlinear SISO Systems: Adaptive Fuzzy Approach, IEEE Trans. On Fuzzy Systems, vol.4, no.1, Feb.1996.
[16]S. S. Sastry and A. Isidori, Adaptive control of linearization systems, IEEE Transaction on Automatic Control, vol. 34, pp.1123-1131, 1989.
[17]S. Tong and Q.L. Zhang, Decentralized Output Feedback Fuzzy H-infinity Tracking Control for Nonlinear Interconnected Systems with Time-delay, Int. J. of Innovative Computing Information and Control, vol. 4, no. 12, pp. 3385-3398, 2008.
[18]L. X. Wang, Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1994.
[19]Wang, T and T. Shaocheng, Adaptive fuzzy output feedback control for SISO nonlinear systems, International Journal of Innovative Computing, Information and Control, vol. 2, no. 1, pp.51-60, 2006.
[20]Tsung-Chih Lin, Chi-Hsu Wang, and Han-Leih Liu, Adaptive Hybrid Intelligent Control for Uncertain Nonlinear Dynamical Systems Using VSS and H∞ Approaches. International Journal of Electrical Engineering, vol.11, no.1, pp.59-70, 2004.
[21]J. M. Mendel, “Type-2 fuzzy sets and systems: an overview,” IEEE Computational Intelligence Magazine, no. 1, pp. 20-29, 2007.
[22]K. Diethelm, N.J. Ford and A.D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn. 29 (2002), pp. 3–22.
[23][13] K. Diethelm, An algorithm for the numerical solution of differential equations of fractional order, Elec. Trans. Numer. Anal. 5 1997, pp. 1–6.
[24]R.-L. Magin, Fractional calculus in bioengineering, Begell House, Inc. 2006.
[25]I. Podlubny, Fractional differential equations, Academic Press, San Diego 1999.
[26]Stephen Boyd, Laurent El Ghaoui, Eric Feron, Venkataramanan,"Linear Matrix Inequalities in System and Control Theory".
[27]Zadeh, L. A. " Fuzzy sets ", Information Control, vol. 8, pp.338-353, 1965.
[28]Tsung-Chih Lin, Ming-Che Chen, "Adaptive Hybrid Type-2 Intelligent Sliding Mode Control for Uncertain Nonlinear Multivariable Dynamical Systems," Fuzzy Sets and Systems , 171 , pp. 44-71 , 2011-03.
[29]Tsung-Chih Lin, Ming-Che Chen and Mehdi Roopaei, "Stable Direct Adaptive Interval Type-2 Fuzzy Sliding Mode Control For Synchronization Of Uncertain Chaotic Systems," Preceeding of the 5th IEEE Conference on Industrial Electron , pp. 1270-1275 , 2010-06.
[30]Tsung-Chih Lin, "Analog Circuit Fault Diagnosis under Parameter Variations Based on Type-2 Fuzzy Logic Systems," International Journal of Innovative Computing,Information an , 5/6 , pp. 2137-2158 , 2010-05.
[31]Tsung-Chih Lin, Mehdi Roopaei, "Based on Interval Type-2 Adaptive fuzzy Η∞ Tracking Controller for SISO Time-Delay Nonlinear Systems," Communications in Nonlinear Science and Numerical Simulation , 12/15 , pp. 4065-4075 , 2010-05.
[32]Tsung-Chih Lin, Kang-Wei Hsu, "Chaos synchronization between two different chaotic systems using adaptive interval type-2 FNN control," Proceeding of International Symposium on Computer, Communica , vol. 2 , pp. 594-597 , 2010-05.
[33]Tsung-Chih Lin Kang-Wei Hsu Valentina Emilia Balas Mehdi Roopaei, "Stable adaptive synchronization of a class of uncertain time-delay chaotic systems via H∞ type-2 FNN control," Proceeding of SOFA 2010 。 4th International Workshop on Sof , pp. 237-242 , 2010-07.
[34]L.M. Pecora and T.L. Carroll, Synchronization in chaotic systems, pp. 821–824, Physical Review Letters 64 (1990).
[35]Stephen Boyd, Laurent El Ghaoui,Eric Feron, and Venkataramanan Balakrishnan"Linear Matrix Inequalities inSystem and Control Theory", (1994)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top