跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/10 18:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳菘澤
研究生(外文):Sung-Tza Chen
論文名稱:利用氨電漿改善金屬奈米晶體非揮發性記憶體可靠度之研究
論文名稱(外文):A Study of Improving Reliability of Metal Nanocrystals Nonvolatile Memory by Using NH3 Plasma Treatment
指導教授:楊文祿
指導教授(外文):Wen-Luh Yang
學位類別:碩士
校院名稱:逢甲大學
系所名稱:電子工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:52
中文關鍵詞:非揮發性記憶體奈米晶體電漿披覆
外文關鍵詞:Nonvolatile MemoryNanocrystalPlasma passivation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
專利申請中,暫不公開
專利申請中,暫不公開
誌謝…………………………………………………………………… i
中文摘要………………………………………………………………..iii
英文摘要………………………………………………………………..iv
目錄……………………………………………………………………... v
圖目錄………………………………………………………………….viii
第一章 緒論
1.1 前言………………………………………………………………...1
1.2 快閃記憶體技術演進……………………………………………...2
1.2.1 浮動式閘極記憶體………………………………………….2
1.2.2 SONOS記憶體………………………………………………4
1.2.3 奈米晶體記憶體……………………………………….........5
1.2.4 SONOS-Type嵌入金屬奈米晶體非揮發性記憶體………..8
1.2.5 近年來本研究群奈米晶體非揮發性記憶體研究成果…….8
1.2.6 研究動機…………………………………………………….9
第二章 氨氣電漿批覆奈米晶體與周圍介電層介面改善可靠度研究
2.1 實驗步驟………………………………………………………….14
2.2 奈米晶體尺寸與密度…………………………………………….15
2.3 非揮發性記憶體之特性
2.3.1 電漿披覆對於電荷捕捉與釋放效能之比較
2.3.1.1 電荷捕捉和釋放效能之比較………………………….15
2.3.1.2 記憶體窗口大小之比較……………………………….16
2.3.2 電荷陷阱在能階上分佈對於電荷捕捉與釋放效能以及資料保存能力之影響………………………………………………...17
2.3.3 電漿披覆對於可靠度特性之比較
2.3.3.1 常溫下資料保存特性比較…………………………….17
2.3.3.2 高溫下資料保存特性比較…………………………….18
2.3.3.3 常溫下耐久力特性比較……………………………….19
2.3.3.4 多次操作過後高溫下資料保存特性比較…………….19
2.3.4 多位元操作下之特性……………………………………...20
第三章 結論…………………………………………………………..28
參考文獻………………………………………………………………..29
附錄……………………………………………………………………..35
第一章 快閃記憶體的應用模式和電荷穿隧機制
1.1 快閃記憶體應用模式
1.1.1 NAND-Type 快閃記憶體………………………………....35
1.1.2 NOR-Type 快閃記憶體……………………………………35
1.2 快閃記憶體電荷穿隧機制
1.2.1 Fowler-Nordheim Tunneling……………………………….36
1.2.2 Channel Hot Electron Injection………………………….....36
1.3 記憶體可靠度分析之原理
1.3.1 電荷保存能力(Retention) ……………………………........37
1.3.2 耐久度(Endurance) …………………………………….......38
1.3.3 干擾(Disturbance) ……………………………………........39
第二章 Discharge-based Multi-pulse Technique (DMP)原理………..40
【1】D. Kahng and S.M.Sze, Bell Syst. Tech. J., Vol. 46, p.1288(1967)
【2】M. H. White, D.A.Adams, J.Bu, IEEE Circuits and Devices, Vol.16, No.4, pp.22-31(2000)
【3】W. J. Tsai, N. K. Zous, C. J. Lie, C. C. Liu, C. H. Chen, T. Wang, “Data retention behavior of a SONOS type two-bit storage flash memory cell”, in IEDM Tech. Dig. , pp.719-722, 2001
【4】M. Specht, U. Dorda, L. Dreeskomfeld, J Kretz, F. Hofmann, M. Stadele, R. J. Luyken, W. Rosner, H. Reisinger, E. Landgraf, T. Schulz, J. Hartwich, R. Kommling, and L. Risch, “20nm tri-gate SONOS memory cells with multi-level operation”, in IEDM Tech, Dig. , pp. 1083-1085, 2004.
【5】C. H. Lee, K. I. Choi, M. K. Cho, Y. H. Song, K. C. Park, and K. Kim, “A novel SONOS structure of SiO2/SiN/Al2O3 with TaN metal gate for multi-giga bit Flash memories,” in IEDM Tech. Dig., 2003, pp. 613–616.
【6】W. J. Tsai, N. K. Zous, C. J. Lie, C. C. Liu, C. H. Chen, T. Wang, “Data retention behavior of a SONOS type two-bit storage flash memory cell”, in IEDM Tech. Dig. , pp.719-722, 2001
【7】B. Eitan, P. Pavan, I. Bloom, E. Aloni, A. Frommer and D. Finzi, “NROM: A Novel Localized Trapping, 2-Bit Nonvolatile Memory Cell”, IEEE Electron Device Lett, Vol. 21, pp. 543-545, Nov. 2000.
【8】E. Lusky, G. Cohen, A Shappir, I. Bloom, and B. Eitan, “NROM the Multi Bit Localized Trapping Cell Scaling and Reliability”, Int. Symp. Advanced Devices and process, pp. 29-32, 2003
【9】B. Y. Choi, B. G. Park1, Y. K. Lee, S. K. Sung, T. Y. Kim, E. S. Cho, H. J. Cho, C. W. Oh, S. H. Kim, D. W. Kim, C. H. Lee, and D. Park, “Highly Scalable and Reliable 2-bit/cell SONOS Memory Transistor beyond 50nm NVM Technology Using Outer Sidewall Spacer Scheme with Damascene Gate Process”, VLSI Tech. Symp. , pp. 118-119, 2005
【10】S. Tiwari, F. Rana, K. Chan, H. Hanafi, C. Wei, and D. Buchanan, “Volatile and nonvolatile memories in silicon with nano-crystal storage”, in IEDM Tech. Dig. , pp. 521-524, 1995
【11】Jan De Blauwe, “Nanocrystal Nonvolatile Memory Devices”, IEEEE Trans. Nanotechnology, Vol. 1, No. 1. 2002
【12】Y. K. Lee, T. H. Kim, S. H. Lee, J. D. Lee, B. G. Park, “Twin-bit silicon-oxide-nitride-oxide-silicon (SONOS) memory by inverted sidewall patterning (TSM-ISP)”, IEEE Digest of Silicon Nanoelectronics Workshop, pp.92-93, 2003.
【13】E. Lusky, Y.Shacham-Diamand, I. Bloom, B. Eitan, “Electrons retention model for localized charge in oxide-nitride-oxide (ONO) dielectric”, IEEE Electron Dev. Lett. , vol.23, pp. 556-558, 2002
【14】Seong-Wan Ryu, Jong-Won Lee, Jin-Woo Han, Sungho Kim, and Yang-Kyu Choi, “Designed Workfunction Engineering of Double-Stacked Metal Nanocrystals for Nonvolatile Memory Application”, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 56, NO. 3, MARCH 2009
【15】Jing Hao Chen, Ying Qian Wang, Won Jong Yoo, Senior Member, IEEE, Yee-Chia Yeo, Nonvolatile Flash Memory Device Using GeNanocrystals Embedded in HfAlO High-kTunneling and Control Oxides: Device Fabrication and Electrical Performance, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 51, NO. 11, NOVEMBER 2004
【16】H. I. Hanafi, S. Tiwari, and I. Khan, “Fast and long retention-time nanocrystal memory,” IEEE Trans. Electron Devices, vol. 43, pp. 1553–1558, Sept. 1996.
【17】Y.-C. King, T.-J. King, and C. Hu, “MOS memory using germanium nanocrystals formed by thermal oxidation of Si Ge ,” in IEDM Tech. Dig., 1998, pp. 115–118.
【18】S. M. Sze, Physics of Semiconductor Devices, 2nd ed. New York: Wiley, 1981, pp. 849–850
【19】Y. Shi, K. Saito, H. Ishikuro, and T. Hiramoto, “Effects of interface traps on charges retention characteristics in silicon-quantum-dot-based metal-oxidesemiconductor diodes,” Jpn. J. Appl. Phys., vol. 38, pp. 425–428, Jan. 1999
【20】T. Usuki, T. Futatsugi, and N. Yokoyama, “A proposal of new floatinggate memory storing a small number of electrons with relatively long retention time at low voltage operations,” Microelectron. Eng., vol. 47, pp. 281–283, 1999.
【21】D.-W. Kim, T. Kim, and S. K. Banerjee, “Memory characterization of SiGe quantum dot Flash memories with HfO and SiO tunneling dielectrics,” IEEE Trans. Electron Devices, vol. 50, pp. 1823–1829, Sept.2003.
【22】Weihua Guan, Shibing Long, Ming Liu *, Qi Liu, Yuan Hu, Zhigang Li, Rui Jia, “Modeling of retention characteristics for metal and semiconductor nanocrystal memories”, Solid-State Electronics 51 (2007) 806–811.
【23】Konstantin K. Likharev, “Single-Electron Devices and Their Applications”, Proc. IEEE, vol. 87, pp. 606-632, April 1999.
【24】P.H. Yeh, L.J. Chena, P.T. Liu, D.Y. Wang, T.C. Changd, “Metal nanocrystals as charge storage nodes for nonvolatile memory devices”, Electrochimica Acta 52 (2007) 2920–2926.
【25】Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, “Metal nanocrystal memories—Part I: Device design and fabrication,” IEEE Trans. Electron Devices, vol. 49, no. 9, pp. 1606–1613, Sep. 2002
【26】Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, “Metal nanocrystal memories—Part II: Electrical characteristics,” IEEE Trans. Electron Devices, vol. 49, no. 9, pp. 1614–1622, Sep. 2002.
【27】C. Lee, J. Meteer, V. Narayanan, and E. C. Kan, “Self-assembly of metal nanocrystals on ultrathin oxide for nonvolatile memory applications,” J. Electron. Mater., vol. 34, no. 1, pp. 1–11, Jan. 2005.

【28】T.-H. Hou, C. Lee, V. Narayanan, U. Ganguly, and E. C. Kan, “Design optimization of metal nanocrystal memory—Part I: Nanocrystal array engineering,” IEEE Trans. Electron Devices, vol. 53, no. 12, pp. 3095– 3102, Dec. 2006.
【29】T.-H. Hou, C. Lee, V. Narayanan, U. Ganguly, and E. C. Kan, “Design optimization of metal nanocrystal memory—Part II: Gate-stack engineering,” IEEE Trans. Electron Devices, vol. 53, no. 12, pp. 3103–3108, Dec. 2006.
【30】J. J. Lee and D. L. Kwong, “Metal nanocrystal memory with high-k tunneling barrier for improved data retention,” IEEE Trans. Electron Devices, vol. 52, no. 4, pp. 507–511, Apr. 2005.
【31】S. K. Samanta, P. K. Singh, W. J. Yoo, G. Samudra, Y.-C. Yeo, L. K. Bera, and N. Balasubramanian, “Enhancement of memory window in short channel nonvolatile memory devices using double layer tungsten nanocrystals,” in IEDM Tech. Dig., 2005, pp. 170–173.
【32】T. Shan, C. Mao, Y. Liu, D. Q. Kelly, and S. K. Banerjee, “Proteinmediated nanocrystal assembly for flash memory fabrication,” IEEE Trans. Electron Devices, vol. 54, no. 3, pp. 433–438, Mar. 2007.
【33】K. S. Seol, S. J. Choi, J.-Y. Choi, E.-J. Jang, B.-K. Kim, S.-J. Park, D.-G. Cha, I.-Y. Song, J.-B. Park, Y. Park, and S.-H. Choi, “Pdnanocrystal- based nonvolatile memory structures with asymmetric SiO2/HfO2 tunnel barrier,” Appl. Phys. Lett., vol. 89, no. 8, pp. 083 109-1–083 109-3, Aug. 2006.
【34】Jong Jin Lee, Yoshinao Harada, Jung Woo Pyun and Dim-Lee Kwong, “Nickel nanocrystal formation on HfO2 dielectric for nonvolatile memory device applications”, Applied Physics Letters 86, 103505 (2005)
【35】Jin Lu, Ting-Chang Chang, Yu-Ting Chen, Jheng-Jie Huang, Po-Chun Yang, Shih-Ching Chen, Hui-Chun Huang, Der-Shin Gan, New-Jin Ho, Yi Shi, and Ann-Kuo Chu, Enhanced retention characteristic of NiSi2 /SiNx compound nanocrystal memory, Appl. Phys. Lett. 96, 262107 (2010)
【36】Chungho Lee, Tuo-Hung Hou, and Edwin Chih-Chuan Kan, Nonvolatile Memory With a Metal Nanocrystal/Nitride Heterogeneous Floating-Gate, Ieee Transactions On Electron Devices, Vol. 52, No. 12, December 2005
【37】S. K. Samanta, P. K. Singh, W. J. Yoo, G. Samudra, Y.-C. Yeo, L. K. Bera, and N. Balasubramanian, “Enhancement of memory window in short channel non-volatile memory devices using double layer tungsten nanocrystals,” in IEDM Tech. Dig., 2005, pp. 170–173
【38】C. Lee, A. Gorur-Seetharam, and E. C. Kan, “Operational and reliability comparison of discrete-storage nonvolatile memories: Advantages of single- and double-layer metal nanocrystals,” in IEDM Tech. Dig., 2003, pp. 22–26.
【39】S.-W. Ryu, Y.-K. Choi, C. B.Mo, S. H. Hong, P. K. Park, and S.-W. Kang, “A thickness modulation effect of HfO2 interfacial layer between doublestacked Ag nanocrystals for nonvolatile memory device applications,” J. Appl. Phys., vol. 101, no. 2, pp. 026 109-1–026 109-3, Jan. 2007.
【40】Chao-Cheng Lin, Ting-Chang Chang, Chun-Hao Tu, Wei-Ren Chen, Chih-Wei Hu, Simon M. Sze, Tseung-Yuen Tseng, Sheng-Chi Chen, and Jian-Yang Lin, “Improved reliability of Mo nanocrystal memory with ammonia plasma treatment”, Applied Physics Letters 94, 062106 (2009)
【41】Tsung-Kuei Kang, Ta-Chuan Liao, Cheng-Li Lin, and Wen-Fa Wu, “Effect of Nitrogen Plasma Treatment on Electrical Characteristics for Pd Nanocrystals in Nonvolatile Memory”, Japanese Journal of Applied Physics 49 (2010) 086202
【42】M. Houssa, M. Tuominen, M. Naili, V. Afanas’ev and A. Stesmans, S. Haukka, M. M. Heyns, “Trap-assisted tunneling in high permittivity gate dielectric stacks”, J. Appl. Phys. 87 (2000) 8615
【43】X.F.Zheng, W.D.Zhang B. Govoreanu(2), J.F.Zhang, J. van Houdt,” A discharge-based multi-pulse technique (DMP) for probing electron trap energy distribution in high-k materials for Flash memory application, IEDM.2009(5424403)
【44】International Technology Roadmap for Semiconductors
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top