跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/16 02:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:紀伯俞
研究生(外文):Po-yu Chi
論文名稱:不同電漿離子轟擊能量對MANOS非揮發性記憶體電性之影響
論文名稱(外文):Influence of Various Plasma Energy on Electrical Properties for Ion-Bombarded MANOS Nonvolatile Memory
指導教授:楊文祿
指導教授(外文):Wen-Luh Yang
學位類別:碩士
校院名稱:逢甲大學
系所名稱:電子工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:71
中文關鍵詞:離子轟擊非揮發性記憶體低功率消耗
外文關鍵詞:disturbancenonvolatile memoryion bombardment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:218
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
專利申請中,暫不公開
專利申請中,暫不公開
目 錄
誌謝 I
摘要 III
英文摘要 V
目錄 VII
圖目錄 X
表目錄 XII
第一章 緒論 1
1.1 前言 1
1.2 快閃記憶體技術演進 3
1.2.1 浮動式閘極非揮發性記憶體 3
1.2.2 SONOS非揮發性記憶體 5
1.2.3 Ion-bombarded SONOS-type 非揮發性記憶體 8
第二章 不同離子轟擊的能量對非揮發性記憶體儲存層之探討 11
2.1 研究動機 11
2.2 實驗方法與製程步驟 14
2.3 非揮發性記憶體之特性 18
2.3.1 離子轟擊能量對薄膜的影響 18
2.3.1.1 HRTEM分析 18
2.3.1.2 不同跨電場對特性之影響 18
2.3.2 電荷捕捉/釋放效能 19
2.3.2.1 不同轟擊能量之效益 19
2.3.2.2 離子轟擊主要之效益 20
2.3.3 電荷主要儲存中心位置對特性之影響 22
2.3.3.1 不同位置對 VFB shift 之影響 22
2.3.3.2 電荷陷阱主要增益之探討 23
2.3.4 元件可靠度之分析 23
2.3.4.1 不同轟擊能量對可靠度之影響 23
2.3.4.2 離子轟擊之可靠度探討 24
2.3.5 電荷陷阱在能階上之分佈影響 25
2.3.5.1 電荷儲存能階對電荷捕捉/釋放效能之影響 26
2.3.5.2 電荷儲存能階對可靠度之影響 26
第三章 總結 35
參考文獻 36
附錄
第一章 非揮發性記憶體基本原理 41
1.1 電荷穿隧機制 41
1.1.1 Fowler-Nordheim穿隧 41
1.1.2 Direct穿隧 42
1.1.3 Channel Hot Electron Injection 43
1.2 記憶體可靠度分析原理 43
1.2.1 電荷保存能力(Data Retention) 44
1.2.2 耐久度(Endurance) 45
1.2.3 干擾(Disturbance) 46
第二章 電漿原理簡介 51
2.1 定義 51
2.2 電漿成分與產生 51
2.3 電漿中的碰撞 52
2.3.1 離子化碰撞 52
2.3.2 激發與鬆弛碰撞 53
2.3.3 分解碰撞 54
2.3.4 其他碰撞 54
2.4 平均自由路徑 55
第三章 Discharge-based Multi-pulse Technique (DMP)原理 56
[1]S. Lai, Future Trends of Nonvolatile Memory Technology, December 2001.
[2]S. Aritome, “Advanced Flash Memory Technology and Trends for File Storage Application”, IEEE IEDM Tech. Dig, pp. 763-766, 2000
[3]D. Kahng and S. M. Sze, “A Floating Gate and Its Application to Memory Device”, Bell Syst. Tech. J. , Vol. 46, p. 1288, 1967.
[4]M. H. White, D. A. Adams, J. Bu, “On the Go with SONOS”, IEEE Circuits and Devices, vol. 16, no. 4, pp. 22-31, 2000.
[5]J. D. Blauwe, “Nanocrystal Nonvolatile Memory Devices”, IEEE Transaction on Nanotechnology, Vol. 1. pp. 72-77, 2002
[6]W. J. Tsai, N. K. Zous, C. J. Lie, C. C. Liu, C. H. Chen, T. Wang, “Data retention behavior of a SONOS type two-bit storage flash memory cell”, IEEE IEDM Tech. Dig. , pp.719-722, 2001
[7]M. Specht, U. Dorda, L. Dreeskomfeld, J Kretz, F. Hofmann, M. Stadele, R. J. Luyken, W. Rosner, H. Reisinger, E. Landgraf, T. Schulz, J. Hartwich, R. Kommling, and L. Risch, “20nm tri-gate SONOS memory cells with multi-level operation”, IEEE IEDM Tech, Dig. , pp. 1083-1085, 2004
[8]Y. H. Lin, C. H. Chien, C. T. Lin, C. Y. Chang, and T. F. Lei, “High-Performance Nonvolatile HfO2 Nanocrystal Memory”, IEEE Electron Device Lett, Vol. 26, pp. 154-156, 2005
[9]J. Bu, M. H. White, “Design Considerations in Scaled SONOS Nonvolatile Memory Devices”, Sherman Fairchild Laboratory, 16A Memorial Dr. E. , Lehigh University, Bethlehem.
[10]M. White, Y. Yang, P. Ansha, and M. L. French, “A low voltage SONOS nonvolatile semiconductor memory technology”, IEEE Electron Device Lett, vol. 8, pp.93-95, Mar. 1987.
[11]T. Y. Chan, K. K. Young, and C. Hu, “A true single-transistor oxide-nitride-oxide EEPROM device”, IEEE Electron Device Lett, vol. 8, pp. 93-95, Mar.1987
[12]M. K. Cho and D. M. Kim, “High performance SONOS memory cells free of drain turn-on and over-erase: Compatibility issue with current flash technology”, IEEE Electron Device Lett, vol. 21, pp. 399-401, Aug. 2000.
[13]M. She, H. Takeuchi, and T. J. King, “Silicon-Nitride as a Tunnel Dielectric for Improved SONOS-Type Flash Memory”, IEEE Electron Device Lett, vol.24, pp. 309-311, 2003
[14]T. Sugizaki, M. Kohayashi, M. Ishidao, H. Minakata, M. Yamaguchi,Y. Tamura, Y. Sugiyama, T. Nakanishi, and H. Tanaka, “NovelMulti-bit SONOS Type Flash Memory Using a High-k ChargeTrapping Layer”, Symposium on VLSl Technology Digest of Technical Papers, pp. 27-28 (2003)
[15]Y. C. King, T. J. King, and C. Hu, “A Long-Refresh Dynamic/Quasi-nonvolatile Memory Device with 2-nm Tunneling Oxide”, IEEE Electron Device Lett, Vol. 20, pp. 409-411, 1999
[16]S. S. Chum, C. M. Yih, S. T. Liaw, Z. H. Ho, S. S. Wu, C. J. Lin, D. S. Kuo, and M. S. Liang, “A Novel High Performance and Reliability p-Type Floating Gate N-Channel Flash EEPROM”, VLSI Tech, Symp. , pp. 19-20, 1999

[17]W. J. Tasi, N. K. Zous, T. Wang, Y. H. Joseph Ku, and C. Y. Lu, “A Novel Operation Method to Avoid Overerasure in a Scaled Trapping-Nitride Localized Charge Storage Flash Memory Cell and Its Application for Multilevel Programming”, IEEE Trans. Electron Devices, vol. 53, pp.808-814, 2006
[18]E. Lusky, G. Cohen, A Shappir, I. Bloom, and B. Eitan, “NROM the Multi Bit Localized Trapping Cell Scaling and Reliability”, Int. Symp. Advanced Devices and process, pp. 29-32, 2003
[19]Y. K. Lee, T. H. Kim, S. H. Lee, J. D. Lee, B. G. Park, “Twin-bit silicon-oxide-nitride-oxide-silicon (SONOS) memory by inverted sidewall patterning (TSM-ISP)”, IEEE Digest of Silicon Nanoelectronics Workshop, pp.92-93, 2003
[20]E. Lusky, Y.Shacham-Diamand, I. Bloom, B. Eitan, “Electrons retention model for localized charge in oxide-nitride-oxide (ONO) dielectric”, IEEE Electron Device Lett. , vol.23, pp. 556-558, 2002
[21]M. Specht, U. Dorda, L. Dreeskomfeld, J Kretz, F. Hofmann, M. Stadele, R. J. Luyken, W. Rosner, H. Reisinger, E. Landgraf, T. Schulz, J. Hartwich, R.Kommling, and L. Risch, “20nm tri-gate SONOS memory cells with multi-level operation”, IEEE IEDM Tech. Dig. , pp. 1083-1085, 2004
[22]M. French, H. Sathianathan, and M. H. White, “A SONOS Nonvolatile Memory Cell for Semiconductor Disk Application”, IEEE, Nonvolatile Memory Technology Review, 1993, pp. 70.
[23]Process Integration, Device and Structures and Emerging Research Devices, ITRS, 2010 update.
[24]Hang-Ting Lue, Pei-Ying Du, Szu-Yu Wang, Kuang-Yeu Hsieh, Rich Liu, and Chih-Yuan Lu, “A Study of Gate-Sensing and Channel-Sensing (GSCS) Transient Analysis Method—Part I: Fundamental Theory and Applications to Study of the Trapped Charge Vertical Location and Capture Efficiency of SONOS-Type Devices”, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 55, NO. 8, AUGUST 2008.
[25]Pei-Ying Du, Hang-Ting Lue, Szu-Yu Wang, Tiao-Yuan Huang, Kuang-Yeu Hsieh, Rich Liu, and Chih-Yuan Lu, “Study of gate-injection operated SONOS-type devices using the gate-sensing and channel-sensing (GSCS) method”, IEEE CFP09RPS-CDR 47th Annual International Reliability, Physics Symposium, Montreal, 2009.
[26]Pei-Ying Du, Hang-Ting Lue, Szu-Yu Wang, Erh-Kun Lai, Tiao-Yuan Huang, Kuang-Yeu Hsieh, Rich Liu, and Chih-Yuan Lu, “Study of the Gate-Sensing and Channel-Sensing Transient Analysis Method for Monitoring the Charge Vertical Location of SONOS-Type Devices”, IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, VOL. 7, NO. 3, SEPTEMBER 2007.
[27]Hong Xiao, “Introduction to Semiconductor Manufacturing Technology”.
[28]X.F.Zheng, W.D.Zhang, B. Govoreanu, J.F.Zhang, J. van Houdt,” A discharge-based multi-pulse technique (DMP) for probing electron trap energy distribution in high-k materials for Flash memory application”,IEEE ,2009
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top