跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/16 08:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林家雄
研究生(外文):Chia-Hsiung Lin
論文名稱:利用新穎化學浸泡方式摻雜銅於二氧化矽電阻式記憶體之研究
論文名稱(外文):A novel chemical soak method for Cu-doped SiO2 Resistive RAM
指導教授:楊文祿
指導教授(外文):Wen-Luh Yang
學位類別:碩士
校院名稱:逢甲大學
系所名稱:電子工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:82
中文關鍵詞:耐久力銅摻雜二氧化矽電阻式記憶體
外文關鍵詞:EnduranceResistive RAM (ReRAM)SiO2-baseCu-doped
相關次數:
  • 被引用被引用:0
  • 點閱點閱:260
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
專利申請中,暫不公開
專利申請中,暫不公開
誌謝 I
摘要 III
英文摘要 IV
目錄 V
圖目錄 IX
表目錄 XII
第一章 緒論 1
1.1 前言 1
1.2 快閃式記憶體技術演進 2
1.2.1 浮動式閘極非揮發性記憶體 2
1.2.2 SONOS非揮性記憶體 3
1.3 新世代非揮發性記憶體技術 4
1.3.1 簡介 4
1.3.2 磁阻式記憶體(MRAM) 5
1.3.3 鐵電記憶體(FeRAM) 5
1.3.4 相變化記憶體(PCM) 6
1.3.5 電阻式記憶體(ReRAM) 7
1.4 電阻式記憶體的結構、操作方式與傳導機制 8
1.4.1 電阻式記憶體之結構 8
1.4.2 電阻式記憶體之操作方式 9
1.4.2.1 單極性(Unipolar) 9
1.4.2.2 雙極性(Bipolar) 10
1.4.3 電阻式記憶體之傳導機制 11
1.4.3.1 燈絲理論(filament theory) 11
1.4.3.2 金屬離子傳導機制 12
1.4.3.3 氧空缺傳導機制 13
1.5 電阻式記憶體的優勢與未來發展 13
1.6 利用銅電極於SiO2-base之電阻轉換現象 15
1.6.1 文獻回顧 15
1.6.2 研究動機 17
第二章 新穎式的化學浸泡法於SiO2-base電阻式記憶體之研究 29
2.1 前言 29
2.2 未摻雜銅於SiO2-base之元件 29
2.2.1 實驗方法與製程步驟 29
2.2.2 元件量測之結果與討論 30
2.2.3 結論 31
2.3 摻雜銅之SiO2-base電阻式記憶體 32
2.3.1 實驗方法與製程步驟 32
2.3.2 結果與討論 33
2.3.2.1 TEM薄膜分析 33
2.3.2.2 元件之電阻轉換特性 34
2.3.2.3 元件之資料保存能力(Retention) 38
2.3.2.4 元件之耐久力(Endurance) 38
2.3.2.5 元件之均勻性 39
2.3.3 結論 40
第三章 摻雜不同銅濃度於SiO2-base電阻式記憶體之研究 52
3.1 摻雜不同銅濃度之實驗方法與製程步驟 52
3.2 摻雜不同銅濃度之結果與討論 53
3.2.1 分析不同銅濃度之電阻轉換特性 53
3.2.2 分析不同銅濃度之資料保存能力(Retention) 54
3.2.3 分析不同銅濃度之耐久力(Endurance) 55
3.3 結論 56
第四章 總結 61
參考文獻 62
[1]D. Kahng and S. M. Sze, “A Floating Gate and Its Application to Memory Device”, Bell Syst. Tech. J. , Vol. 46, p. 1288, 1967.
[2]J. D. Blauwe, , IEEE Transaction on Nanotechnology, Vol. 1. pp. 72-77, 2002.
[3]W. J. Tsai, N. K. Zous, C. J. Lie, C. C. Liu, C. H. Chen, T. Wang, in IEDM Tech. Dig. , pp.719-722, 2001.
[4]M. Specht, U. Dorda, L. Dreeskomfeld, J Kretz, F. Hofmann, M. Stadele, R. J. Luyken, W. Rosner, H. Reisinger, E. Landgraf, T. Schulz, J. Hartwich, R. Kommling, and L. Risch, , in IEDM Tech, Dig. , pp. 1083-1085, 2004.
[5]Y. H. Lin, C. H. Chien, C. T. Lin, C. Y. Chang, and T. F. Lei, IEEE Electron Device Lett, Vol. 26, pp. 154-156, 2005.
[6]J. Bu, M. H. White, Sherman Fairchild Laboratory, 16A Memorial Dr. E. , Lehigh University, Bethlehem.
[7]M. K. Cho and D. M. Kim, IEEE Electron Device Lett, vol. 21, pp. 399-401, Aug. 2000.
[8] M. She, H. Takeuchi, and T. J. King, IEEE Electron Device Lett, vol.24, pp. 309-311, 2003.
[9]簡昭欣, 呂正傑, 陳志遠 等, “先進記憶體簡介”, 尖端科技 創刊號。
[10] 葉林秀 等,“磁阻式隨機存取記憶體技術的發展—現在與未來”,物理雙月刊 廿六卷四期(2004)。
[11] 奈米電子共同實驗室使用者聯盟,Bi-Monthly Newsletter,2004 年。
[12] Rainer Waser, Regina Dittmann, Georgi Staikov, and Kristof Szot, Adv. Mater. 2009, 21, 2632–2663.
[13] Rainer Waser “Electrochemical and Thermochemical Memories”, Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 10.1109/IEDM.2008.4796675.
[14] Yu Chao Yang, Feng Pan, Qi Liu, Ming Liu, and Fei Zeng “Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory Application” Nano Lett., Vol. 9, No. 4, 2009.
[15] Sungho Kim and Yang-Kyu Choi “A Comprehensive Study of the Resistive Switching Mechanism in Al/TiOx/TiO2/Al-Structured RRAM” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 56, NO. 12, DECEMBER 2009.
[16] Bin Gao, Bing Sun, Haowei Zhang, Lifeng Liu, Xiaoyan Liu, Ruqi Han, Jinfeng Kang, and Bin Yu “Unified Physical Model of Bipolar Oxide-Based Resistive Switching Memory” IEEE ELECTRON DEVICE LETTERS, VOL. 30, NO. 12, DECEMBER 2009.
[17] M. J. Lee, S. Han, S. H. Jeon et al., “Electrical Manipulation of Nanofilamentsin Transition-Metal Oxides for Resistance-Based Memory”, Nano Lett. 9 (4), 1476-1481 (2009).
[18] Xiao Sun, Bing Sun, Lifeng Liu, Nuo Xu, Xiaoyan Liu, Ruqi Han, Jinfeng Kang, Guangcheng Xiong, and T. P. Ma,“ Resistive Switching in CeOx Films for Nonvolatile Memory Application”, IEEE ELECTRON DEVICE LETTERS, VOL. 30, NO. 4, APRIL 2009.
[19] H. Y. Lee, Y. S. Chen, P. S. Chen, T. Y. Wu, F. Chen, C. C. Wang, P. J. Tzeng, M.-J. Tsai, and C. Lien, “Low-Power and Nanosecond Switching in Robust Hafnium Oxide Resistive Memory With a Thin Ti Cap”, IEEE ELECTRON DEVICE LETTERS, VOL. 31, NO. 1, JANUARY 2010.
[20] Yu-Sheng Chen, Heng-Yuan Lee, Pang-Shiu Chen, Tai-Yuan Wu, Ching-Chiun Wang, Pei-Jer Tzeng, Frederick Chen, Ming-Jinn Tsai, and Chenhsin Lien, “An Ultrathin Forming-Free HfOx Resistance Memory With Excellent Electrical Performance”, IEEE ELECTRON DEVICE LETTERS, VOL. 31, NO. 12, DECEMBER 2010.
[21] Seonghyun Kim, Kuyyadi P. Biju, Minseok Jo, Seungjae Jung, Jubong Park, Joonmyoung Lee, Wootae Lee, Jungho Shin, Sangsu Park, and Hyunsang Hwang, “Effect of Scaling WOx-Based RRAMs on Their Resistive Switching Characteristics”, IEEE ELECTRON DEVICE LETTERS, VOL. 32, NO. 5, MAY 2011.
[22] Chang Bum Lee, Dong Soo Lee, Anass Benayad, Seung Ryul Lee, Man Chang, Myoung-Jae Lee, Jihyun Hur, Young Bae Kim, Chang Jung Kim, and U-In Chung, “Highly Uniform Switching of Tantalum Embedded Amorphous Oxide Using Self-Compliance Bipolar Resistive Switching”, IEEE ELECTRON DEVICE LETTERS, VOL. 32, NO. 3, MARCH 2011.
[23] R. Müller, J. Genoe, and P. Heremans, “Bipolar resistive electrical switching of silver tetracyanoquinodimethane based memory cells with dedicated silicon dioxide “switching layer” ”, APPLIED PHYSICS LETTERS 95, 133509 2009.
[24] Qi Liu, Shibing Long, Hangbing Lv, Wei Wang, Jiebin Niu, Zongliang Huo, Junning Chen, and Ming Liu, “Controllable Growth of Nanoscale Conductive Filaments in Solid-Electrolyte-Based ReRAM by Using a Metal Nanocrystal Covered Bottom Electrode”, ACSNANO, VOL. 4 ▪ NO. 10 ▪ 6162–6168 ▪ 2010.
[25] Qi Liu, Shibing Long, Member, IEEE, Wei Wang, Member, IEEE, Sansiri Tanachutiwat, Yingtao Li, Qin Wang, Manhong Zhang, Zongliang Huo, Junning Chen, and Ming Liu, Senior Member, IEEE, “Low-Power and Highly Uniform Switching in ZrO2-Based ReRAM With a Cu Nanocrystal Insertion Layer”, IEEE ELECTRON DEVICE LETTERS, VOL. 31, NO. 11, NOVEMBER 2010.
[26] Lijie Zhang, Student Member, IEEE, Ru Huang, Senior Member, IEEE, Minghao Zhu, Shiqiang Qin, Yongbian Kuang, Student Member, IEEE, Dejin Gao, Congyin Shi, and Yangyuan Wang, Fellow, IEEE, “Unipolar TaOx-Based Resistive Change Memory Realized With Electrode Engineering”, IEEE ELECTRON DEVICE LETTERS, VOL. 31, NO. 9, SEPTEMBER 2010.
[27] Jubong Park, Minseok Jo, Joonmyoung Lee, Seungjae Jung, Seonghyun Kim, Wootae Lee, Jungho Shin, and Hyunsang Hwang, “Improved Switching Uniformity and Speed in Filament-Type RRAM Using Lightning Rod Effect”, IEEE ELECTRON DEVICE LETTERS, VOL. 32, NO. 1, JANUARY 2011.
[28] 台灣半導體產業協會.簡訊, TSIA第54期簡訊, 2010/Oct. No.54.
[29] Christina Schindler, Sarath Chandran Puthen Thermadam, Rainer Waser, Member, IEEE, and Michael N. Kozicki, Member, IEEE, “Bipolar and Unipolar Resistive Switching in Cu-Doped SiO2”, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 54, NO. 10, OCTOBER 2007.
[30] C. Schindler, M. Weides, M. N. Kozicki, and R. Waser, “Low current resistive switching in Cu–SiO2 cells”, APPLIED PHYSICS LETTERS 92, 122910 2008.
[31] C. Schindler, G. Staikov, and R. Waser, “Electrode kinetics of Cu–SiO2-based resistive switching cells: Overcoming the voltage-time dilemma of electrochemical metallization memories”, APPLIED PHYSICS LETTERS 94, 072109 2009.
[32] Lijie Zhang, Student Member, IEEE, Ru Huang, Senior Member, IEEE, Dejin Gao, Dake Wu, Student Member, IEEE, Yongbian Kuang, Student Member, IEEE, Poren Tang, Student Member, IEEE, Wei Ding, Albert Z. H. Wang, Fellow, IEEE, and Yangyuan Wang, Fellow, IEEE, “Unipolar Resistive Switch Based on Silicon Monoxide Realized by CMOS Technology”, IEEE ELECTRON DEVICE LETTERS, VOL. 30, NO. 8, AUGUST 2009.
[33] Ting-Yi Lin, Li-Ming Chen, Shih-Ching Chang, and Tsung-Shune Chin, “Electrical resistance switching in Ti added amorphous SiOx”, APPLIED PHYSICS LETTERS 95, 162105 2009.
[34] Chia-Jen Li, Shyankay Jou and Wei-Ling Chen, “Effect of Pt and Al Electrodes on Resistive Switching Properties of Sputter-Deposited Cu-Doped SiO2 Film”, Jpn. J. Appl. Phys. 50 (2011) 01BG08.
[35] Y. Bernard, V.T. Renard, P. Gonon, V. Jousseaume, “Back-end-of-line compatible Conductive Bridging RAM based on Cu and SiO2”, Microelectronic Engineering 88 (2011) 814–816.
[36] Chih-Yi Liu, Yung-Hung Huang, Jen-Yen Ho and Chun-Chieh Huang, “Retention mechanism of Cu-doped SiO2-based resistive memory”, J. Phys. D: Appl. Phys. 44 (2011) 205103.
[37] H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C.H. Lin, F. Chen, C. H. Lien and M.-J. Tsai, “Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM”, IEDM Tech. Dig., p297, 2008.
[38] Qi Liu, Shibing Long, Member, IEEE, Wei Wang, Member, IEEE, Sansiri Tanachutiwat, Yingtao Li, Qin Wang, Manhong Zhang, Zongliang Huo, Junning Chen, and Ming Liu, Senior Member, IEEE, “Low-Power and Highly Uniform Switching in ZrO2-Based ReRAM With a Cu Nanocrystal Insertion Layer”, IEEE ELECTRON DEVICE LETTERS, VOL. 31, NO. 11, NOVEMBER 2010.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top