跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/13 10:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江達生
研究生(外文):Jean-de-Dieu Tapsoba
論文名稱:在存活時間與有測量誤差之縱貫資料下聯合建模的半參數估計
論文名稱(外文):Semiparametric Methods for Joint Modeling of Survival and Longitudinal Data Measured with Error
指導教授:李燊銘李燊銘引用關係王清雲王清雲引用關係
指導教授(外文):Shen-Ming LeeChing-Yun Wang
學位類別:博士
校院名稱:逢甲大學
系所名稱:應用統計研究所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:112
中文關鍵詞:隨機效果風險比例測量誤差最大概似改變點條件分數修正分數累積生成函數
外文關鍵詞:Random effectsProportional hazardsMeasurement errorsMaximum likelihoodCumulant generating functionCorrected scoreConditional scoreChangepoint
相關次數:
  • 被引用被引用:0
  • 點閱點閱:310
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
在釵h長期追蹤的研究中,探討具誤差傾向的長期追蹤變數與檢測存活時間的關係是一個重要的議題。而傳統的統計方法,忽略此測量的誤差,因此對於兩者的關係容易獲得不可靠的結論。本文中我們將提出新的統計方法來解決在存活時間與長期追蹤資料中具有測量誤差的問題。假設長期追蹤的資料是一個具有隨機效果的模式(random effects model),且存活時間服從Cox的風險比例模式(Cox proportional hazards model)時,在聯合建模(joint modeling)的架構下提出的新的估計方法。

首先,我們假設真實的長期追蹤變數的行為服從一個線性的隨機效果模式,提出一個近似的無母數修正分數(approximate nonparametric corrected score)。在隨機效果或誤差項沒有任何分配的假設下,提出新的估計方法外與其大樣本的性質。

在本文的第二部份,我們在長期追蹤變數資料的線性隨機效果模式下,應用無母數的最大概似法來提供聯合建模之估計。另外,我們也提出了一個修正的無母數最大概似法,此方法在計算上相當容易,且能避免傳統上對於隨機效果的須有常態性假設的缺點。

最後,在本文中我們對於長期追蹤資料提出一個具特定對象的改變點聯合模式(a joint model with a subject-specific changepoints model),且發展兩個半參數的方法來進行估計,分別為半參數化的修正分數方法及半參數化的條件分數方法。這些方法的估計量在文中也證明其是等價的,此外也推導出這些估計量的漸近性質。本文所提出的估計方法,也將經由模擬研究探討其在有限樣本下的表現,同時我們也進一步使用AIDS的臨床資料來說明所有方法的表現。
In many longitudinal studies, an important objective is the investigation of the association between some error-prone longitudinal covariate and censored survival time processes.
Standard statistical methods that ignore measurement error may lead to unreliable conclusion regarding the relationship between the two processes. In this thesis, we propose new methods that address the problem of measurement error in the analysis of survival time and longitudinal data. The methods are built under the joint modeling framework assuming a random effects model for the longitudinal covariate data and the Cox proportional hazards model for the survival data.

Firstly, we postulate a linear random effects model for the true longitudinal covariate process and develop an approximate nonparametric corrected score method for the joint modeling of the survival and longitudinal data. This approach requires no distributional assumption on the random effects or the error. The large sample properties of the estimator that is based on this method are also established.

Secondly, we present a nonparametric maximum likelihood method for a joint model that also includes a linear random effects model for the longitudinal covariate data. In addition, we provide a corrected nonparametric maximum likelihood approach that is computationally attractive and also has the advantage of being able to avoid the traditional normality assumption about the distribution of the random effects.

Finally, we suggest a joint model with a subject-specific changepoint model for the longitudinal data and develop two semiparametric methods, namely corrected score and conditional score approaches. The estimators based on these methods are shown to be equivalent and their asymptotic theories are also derived. The finite sample size performances of all the proposed estimators are investiagted through simulation studies. Furthermore, we illustrate all the methods using data from an AIDS clinical study.
1 Introduction 1
1.1 Longitudinal studies . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Joint modeling of longitudinal and survival data . . . . . . . . . . 3
1.3 Organization of the dissertation . . . . . . . . . . . . . . . . . . . 4
2 Approximate nonparametric corrected score method 6
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Formulation of the joint model . . . . . . . . . . . . . . . . . . . 10
2.2.1 Submodel for the longitudinal data . . . . . . . . . . . . . 10
2.2.2 Submodel for the survival times . . . . . . . . . . . . . . . 11
2.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 The ideal and naive methods . . . . . . . . . . . . . . . . . 12
2.3.2 Parametric corrected-score approach . . . . . . . . . . . . 13
2.3.3 Conditional score method . . . . . . . . . . . . . . . . . . 15
2.3.4 Approximate nonparametric corrected-score method . . . . 15
2.4 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 The ACTG-175 data example . . . . . . . . . . . . . . . . . . . . 29
2.5.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5.2 Analysis models and results . . . . . . . . . . . . . . . . . 29
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3 Maximum likelihood-based methods for joint models 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Approaches to estimation . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.1 A nonparametric maximum likelihood method . . . . . . . 37
3.2.2 Corrected-nonparametric maximum Likelihood Approach . 40
3.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 The ACTG-175 data example . . . . . . . . . . . . . . . . . . . . 46
3.4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.2 Analysis models and results . . . . . . . . . . . . . . . . . 46
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4 Joint model with subject-specific changepoints in the covariate 49
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.1 Longitudinal data submodel . . . . . . . . . . . . . . . . . 52
4.2.2 Submodel for the survival data . . . . . . . . . . . . . . . 53
4.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.1 Corrected score method . . . . . . . . . . . . . . . . . . . 57
4.3.2 Conditional score approach . . . . . . . . . . . . . . . . . 59
4.4 Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5 ACTG 175 data analysis . . . . . . . . . . . . . . . . . . . . . . . 65
4.5.1 Analysis models . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5.3 Choice of the smoothing parameter . . . . . . . . . . . . . 70
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5 Concluding Discussion 78
References 80
Appendix 86
Aalen, O. O. (1978). Nonparametric inference for a family of counting processes.
Annals of Statistics 10, 701–726.
Anderson, P. K. and Gill, R. D. (1982). Cox’s regression model for counting
process: a large sample study. Annals of Statistics 10, 1100–1120.
Anderson, S. and Jones, H. (1995). Smoothing splines for longitudinal data.
Statistics in Medicine 14, 1235-1248. DOI: 10.1002/sim.4780141108.
Bacon, D. W. and Watts, D. G. (1971). Estimating the transition between two
intersecting straight lines. Biometrika 58, 525-534.
Breslow, N.E. (1974). Covariance analysis of censored data. Biometrics 30,
89-99.
Carroll, R. G., Ruppert, D., Stefanski, L. A. and Crainiceau, C. M. (2006). Measurement
error in nonlinear models: A modern perspective, Second Edition.
Chapman and Hall, London.
Cox, D.R. (1972). Regression models and life tables (with discussion). Journal
of the Royal Statistical Society Series B 34, 187–220.
Cutler, S. and Ederer, F. (1958). Maximum utilization of the life time table
method in analyzing survival. Journal of chronic diseases 8, 699–712.
Davidian, M. and Giltinan, D. M. (2003). Nonlinear models for repeated measurement
data: An overview and update. Journal of Agricultural, Biological,
and Environmental Statistics 8, 387–419.
De Gruttola, V. and Tu, X. M. (1994). Modeling progression of CD4-lymphocyte
count and its relationship to survival time. Biometrics 50, 1003–1014.
Dempster, A. P. Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal Statistical
Society Series B 39, 1–38.
Diggle, P. J., Sousa, I., Chetwynd, A. G. (2008). Joint modelling of repeated
measurements and time-to-event outcomes: The fourth Armitage lecture.
Statistics in Medicine 27, 2981-2998.
Ding, J. andWang, J. L. (2008). Modeling longitudinal data with nonparametric
multiplicative random effects jointly with survival data. Biometrics 64,
546-556.
Durb´an, M., Harezlak, J., Wand, M. P. and Carroll, R. J. (2005). Simple fitting
of subject-specific curves for longitudinal data. Statistics in Medicine 24,
1153-1167.
Faucett, C. L., Schenker, N. and Taylor, J. M. (2002). Survival analysis using
auxiliary variables via multiple imputations with application to AIDS
clinical trial data. Biometrics 58, 37-47.
Gorfine, M., Hsu, L. and Prentice, R. L. (2004). Nonparametric correction for
covariate measurement error in a stratified Cox model. Biostatistics 5,
75–87.
Hammer, S. M., Katzenstein, D. A., Huges, M. D., Gundacker, H., Schooley,
R.T., Haubrich, M. R., Henry, W. K., Lederman, M. M., Phair, J. P., Niu,
M., Hirch, M. S. and Merigan, T. C. (1996). A trial comparing nucleoside
monotherapy with combination therapy in HIV-infected adults with CD4
cell counts from 200 to 500 per cubic millimeter. The New England Journal
of Medecine, 335, 1081–1090.
Henderson, R., Diggle, P. and Dobson, A. (2000). Joint modelling of longitudinal
measurements and event time data. Biostatistics 1, 465–480.
Herring, A. H. and Ibrahim, J. G. (2001). Likelihood-based methods for missing
covariates in the Cox proportional hazards model. Journal of the American
Statistical Association 96, 292–302.
Hsieh, F., Tseng, Y. K. and Wang, J. L. (2006). Joint modeling of survival time
and longitudinal data: likelihood revisited Biometrics 62, 1037–1043.
Huang, Y. and Wang, C. Y. (2000). Cox regression with covariates unascertainable:
a nonparametric -correction approach. Journal of the American
Statistcal Association 95, 1209–1219.
Huges, M. D. (1993). Regression dilution in the proportional hazards model.
Biometrics 49, 1056–1066.
Jacqmin-Gadda, H., Commenges, D. and Dartigues, J. F. (2006). Random
changepoint model for joint modeling of cognitive decline and dementia.
Biometrics 62, 254–260.
Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete
observations. Journal of the American Statistical Association 53, 457-481.
Kendall, M. G. and Stuart, A. (1977). The advanced theory of statistics. 4th
edition, Volume 1. Hafner, New York.
Kiuchi, A. S., Hartigan, J. A., Holford, T. R., Rubinstein, P. and Stevens, C. E.
(1995). Change points in the series of T4 counts prior to AIDS. Biometrics
51, 236-248.
Kong, F. and Gu, M. (1999). Consistent estimation in Cox proportional hazards
model with covariate measurement errors. Statistica Sinica 9, 953-969.
Liang, K. Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized
linear models. Biometrika 73, 13–22.
Nakamura, T. (1992). Proportional hazards model with covariates subject to
measurement error. Biometrics 48, 829–838.
Nelson, W. (1972). Theory and applications of hazard plotting for censored
failure data. Technometrics 141, 203–215.
Prentice, R. (1982). Covariate measurement errors and parameter estimates in
failure time regression. Biometrika 69, 331–342.
Rice, J. and Wu, C. ( 2001). Nonparametric mixed effects models for unequally
sampled noisy curves. Biometrics 57, 253-259.
Rizopoulos, D., Verbeke, G. and Lesaffre, E. (2009). A fully exponential Laplace
approximation for the joint modelling of survival and longitudinal data
Journal of the Royal Statistical Society Series B 71, 637–654.
Rudin, W. (1964). Principle of mathematical analysis. McGraw-Hill.
Seber, G. A. F. and Wild, C. J. (2003). Nonlinear regression. Wiley: New York,
433-489.
Smith, P.J. (1995). A recursive formulation of the old problem of obtaining
moments from cumulants and vice versa. The American Statistician 49,
217–218.
Song, X., Davidian, M. and Tsiatis, A. A. (2002). An estimator for the proportional
hazards model with multiple longitudinal covariates measured with
error. Biostatistics 3, 511–528.
Song, X. and Huang, Y. (2005). On corrected score approach for proportional
hazards model with covariate measurement error. Biometrics 61, 702–714.
Song, X. and Wang, C.Y. (2008). Semiparametric approaches for joint modeling
of survival time and longitudinal data with time-varying coefficients.
Biometrics 64, 557–566.
Stefanski, L. A. and Carroll, R. J. (1987). Conditional scores and optimal scores
in generalized linear measurement error models. Biometrika 74, 703-716.
Tsiatis, A.A. and Davidian, M. (2001). A semiparametric estimator for the proportional
hazards model with longitudinal covariates measured with error.
Biometrika 88, 447–458.
Wang, C. Y. (2006). Corrected score estimator for joint modeling of longitudinal
and failure time data. Statistica Sinica 16, 235–253.
Wang, C.Y. (2008). Nonparametric maximum likelihood estimator for Cox regression
with subject-specific measurement error. Scandinavian Journal of
Statistics 35, 613–628.
Wang, C.Y., Wang, N. and Wang, S. (2000). Regression analysis when covariates
are regression parameters of a random effects model for observed
longitudinal measurements. Biometrics 56, 487–495.
Wang, Y. and Taylor, J. M. G. (1995). Inference for smooth curves in longitudinal
data with application to AIDS clinical trial. Statistics in Medicine
14, 1205-1218. DOI: 10.1002/sim.4780141106.
Wei, L. J. (1992). The accelerated failure time model: a useful alternative to
the Cox regression model in survival analysis. Statistics in Medicine 11,
1871–1879.
Wu, L., Liu, W. and Hu. X. J. (2010). Joint inference on HIV viral dynamics
and immune suppression in presence of measurement errors. Biometrics
66, 327–335.
Wulfsohn, M. and Tsiatis, A. A. (1997). A joint model for survival and longitudinal
data measured with error. Biometrics 53, 330–339.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top