|
Aalen, O. O. (1978). Nonparametric inference for a family of counting processes. Annals of Statistics 10, 701–726. Anderson, P. K. and Gill, R. D. (1982). Cox’s regression model for counting process: a large sample study. Annals of Statistics 10, 1100–1120. Anderson, S. and Jones, H. (1995). Smoothing splines for longitudinal data. Statistics in Medicine 14, 1235-1248. DOI: 10.1002/sim.4780141108. Bacon, D. W. and Watts, D. G. (1971). Estimating the transition between two intersecting straight lines. Biometrika 58, 525-534. Breslow, N.E. (1974). Covariance analysis of censored data. Biometrics 30, 89-99. Carroll, R. G., Ruppert, D., Stefanski, L. A. and Crainiceau, C. M. (2006). Measurement error in nonlinear models: A modern perspective, Second Edition. Chapman and Hall, London. Cox, D.R. (1972). Regression models and life tables (with discussion). Journal of the Royal Statistical Society Series B 34, 187–220. Cutler, S. and Ederer, F. (1958). Maximum utilization of the life time table method in analyzing survival. Journal of chronic diseases 8, 699–712. Davidian, M. and Giltinan, D. M. (2003). Nonlinear models for repeated measurement data: An overview and update. Journal of Agricultural, Biological, and Environmental Statistics 8, 387–419. De Gruttola, V. and Tu, X. M. (1994). Modeling progression of CD4-lymphocyte count and its relationship to survival time. Biometrics 50, 1003–1014. Dempster, A. P. Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society Series B 39, 1–38. Diggle, P. J., Sousa, I., Chetwynd, A. G. (2008). Joint modelling of repeated measurements and time-to-event outcomes: The fourth Armitage lecture. Statistics in Medicine 27, 2981-2998. Ding, J. andWang, J. L. (2008). Modeling longitudinal data with nonparametric multiplicative random effects jointly with survival data. Biometrics 64, 546-556. Durb´an, M., Harezlak, J., Wand, M. P. and Carroll, R. J. (2005). Simple fitting of subject-specific curves for longitudinal data. Statistics in Medicine 24, 1153-1167. Faucett, C. L., Schenker, N. and Taylor, J. M. (2002). Survival analysis using auxiliary variables via multiple imputations with application to AIDS clinical trial data. Biometrics 58, 37-47. Gorfine, M., Hsu, L. and Prentice, R. L. (2004). Nonparametric correction for covariate measurement error in a stratified Cox model. Biostatistics 5, 75–87. Hammer, S. M., Katzenstein, D. A., Huges, M. D., Gundacker, H., Schooley, R.T., Haubrich, M. R., Henry, W. K., Lederman, M. M., Phair, J. P., Niu, M., Hirch, M. S. and Merigan, T. C. (1996). A trial comparing nucleoside monotherapy with combination therapy in HIV-infected adults with CD4 cell counts from 200 to 500 per cubic millimeter. The New England Journal of Medecine, 335, 1081–1090. Henderson, R., Diggle, P. and Dobson, A. (2000). Joint modelling of longitudinal measurements and event time data. Biostatistics 1, 465–480. Herring, A. H. and Ibrahim, J. G. (2001). Likelihood-based methods for missing covariates in the Cox proportional hazards model. Journal of the American Statistical Association 96, 292–302. Hsieh, F., Tseng, Y. K. and Wang, J. L. (2006). Joint modeling of survival time and longitudinal data: likelihood revisited Biometrics 62, 1037–1043. Huang, Y. and Wang, C. Y. (2000). Cox regression with covariates unascertainable: a nonparametric -correction approach. Journal of the American Statistcal Association 95, 1209–1219. Huges, M. D. (1993). Regression dilution in the proportional hazards model. Biometrics 49, 1056–1066. Jacqmin-Gadda, H., Commenges, D. and Dartigues, J. F. (2006). Random changepoint model for joint modeling of cognitive decline and dementia. Biometrics 62, 254–260. Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association 53, 457-481. Kendall, M. G. and Stuart, A. (1977). The advanced theory of statistics. 4th edition, Volume 1. Hafner, New York. Kiuchi, A. S., Hartigan, J. A., Holford, T. R., Rubinstein, P. and Stevens, C. E. (1995). Change points in the series of T4 counts prior to AIDS. Biometrics 51, 236-248. Kong, F. and Gu, M. (1999). Consistent estimation in Cox proportional hazards model with covariate measurement errors. Statistica Sinica 9, 953-969. Liang, K. Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika 73, 13–22. Nakamura, T. (1992). Proportional hazards model with covariates subject to measurement error. Biometrics 48, 829–838. Nelson, W. (1972). Theory and applications of hazard plotting for censored failure data. Technometrics 141, 203–215. Prentice, R. (1982). Covariate measurement errors and parameter estimates in failure time regression. Biometrika 69, 331–342. Rice, J. and Wu, C. ( 2001). Nonparametric mixed effects models for unequally sampled noisy curves. Biometrics 57, 253-259. Rizopoulos, D., Verbeke, G. and Lesaffre, E. (2009). A fully exponential Laplace approximation for the joint modelling of survival and longitudinal data Journal of the Royal Statistical Society Series B 71, 637–654. Rudin, W. (1964). Principle of mathematical analysis. McGraw-Hill. Seber, G. A. F. and Wild, C. J. (2003). Nonlinear regression. Wiley: New York, 433-489. Smith, P.J. (1995). A recursive formulation of the old problem of obtaining moments from cumulants and vice versa. The American Statistician 49, 217–218. Song, X., Davidian, M. and Tsiatis, A. A. (2002). An estimator for the proportional hazards model with multiple longitudinal covariates measured with error. Biostatistics 3, 511–528. Song, X. and Huang, Y. (2005). On corrected score approach for proportional hazards model with covariate measurement error. Biometrics 61, 702–714. Song, X. and Wang, C.Y. (2008). Semiparametric approaches for joint modeling of survival time and longitudinal data with time-varying coefficients. Biometrics 64, 557–566. Stefanski, L. A. and Carroll, R. J. (1987). Conditional scores and optimal scores in generalized linear measurement error models. Biometrika 74, 703-716. Tsiatis, A.A. and Davidian, M. (2001). A semiparametric estimator for the proportional hazards model with longitudinal covariates measured with error. Biometrika 88, 447–458. Wang, C. Y. (2006). Corrected score estimator for joint modeling of longitudinal and failure time data. Statistica Sinica 16, 235–253. Wang, C.Y. (2008). Nonparametric maximum likelihood estimator for Cox regression with subject-specific measurement error. Scandinavian Journal of Statistics 35, 613–628. Wang, C.Y., Wang, N. and Wang, S. (2000). Regression analysis when covariates are regression parameters of a random effects model for observed longitudinal measurements. Biometrics 56, 487–495. Wang, Y. and Taylor, J. M. G. (1995). Inference for smooth curves in longitudinal data with application to AIDS clinical trial. Statistics in Medicine 14, 1205-1218. DOI: 10.1002/sim.4780141106. Wei, L. J. (1992). The accelerated failure time model: a useful alternative to the Cox regression model in survival analysis. Statistics in Medicine 11, 1871–1879. Wu, L., Liu, W. and Hu. X. J. (2010). Joint inference on HIV viral dynamics and immune suppression in presence of measurement errors. Biometrics 66, 327–335. Wulfsohn, M. and Tsiatis, A. A. (1997). A joint model for survival and longitudinal data measured with error. Biometrics 53, 330–339.
|