(3.238.7.202) 您好!臺灣時間:2021/03/04 02:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:藍國正
研究生(外文):guo-zheng lan
論文名稱:乳化油注入飽和土壤管柱傳輸實驗之模擬分析
論文名稱(外文):Modeling study on transport of edible oil Emulsions in a soil column
指導教授:馮秋霞
指導教授(外文):Chiu-Shia Fen
學位類別:碩士
校院名稱:逢甲大學
系所名稱:環境工程與科學所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:77
中文關鍵詞:乳化油溶液
外文關鍵詞:RT3Demulsified oilMT3D
相關次數:
  • 被引用被引用:0
  • 點閱點閱:345
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:64
  • 收藏至我的研究室書目清單書目收藏:0
工業中所使用的含氯脂肪族碳氫化合物常發現於被污染的地下水體中,由於其低熔點及高蒸氣壓的特性,在地下含水層中無法完全溶解而造成地下水水質的長期危害。針對這類型的污染物,提供土壤微生物碳源與能源,在厭氧的環境下可以有效的進行降解作用。而乳化的大豆油是目前所發現最經濟、不會造成危害且可以持續長期存在於地下水層中,其可以在現地微生物整治工作中有效的提供微生物所需要的基質,故近年有很多的實驗與模式分析欲了解乳化油在地下含水層中的傳輸過程與反應作用。
本研究使用地下水流傳輸模式-MODFLOW(Modular three-dimensional groundwater flow model)及污染物傳輸模式-RT3D(Reactive Transport in 3-Dimensions)模擬乳化油溶液注入土壤管柱後其傳輸及吸附的情況。本研究所使用的實驗資料為參考Coulibaly et al.(2006)的成果,並與Cortis and Ghezzehei(2007)的模式結果比較,以了解不同模式分析乳化油傳輸過程的差異,最後並進行模式參數敏感度的分析。
研究結果顯示,在注入實驗中乳化油溶液可以分佈於80公分長的管柱中,且吸附相濃度變化範圍為1~9mg/g,模擬實驗亦有類似的結果。對流-延散傳輸模式(本研究所使用)在不考慮流速異質分佈分佈的影響下,可能無法描述管柱尾端濃度延遲出流的特性。再者,敏感度分析中,則顯示空床碰撞效率參數對於吸附態乳化油濃度有很大的影響。
Chlorinated aliphatic hydrocarbons which were used in industry are often found in contaminated ground water. Due to low solubility and high vapor pressure, they become a long-term thread once existing in aquifers. In situ anaerobic bioremediation process can effectively degrade such contaminants by additionally providing a carbon source for biomass growth and biological treatment of the contaminants. Emulsion of soybean oil was found to the most effective and economical way to use in the treatment. Recently, several experimental and modeling studies were performed to delineate reactive transport of oil emulsions in water-saturated porous systems.
In this study, a ground water flow model, MODFLOW, and a reactive transport model, RD3T, were applied for analyzing the transport and sorption kinetic of oil emulsions in a water-saturated soil column. Model result was assessed by the experimental data obtained from Coulibaly et al (2006). It was also compared with the result of Cortis and Ghezzehei (2007), who provided a different modeling approach for assessing emulsion transport. Finally sensitivity analysis for certain model parameters was performed.
Similar to the experimental result, model simulation shows that the emulsified oil can distributed in the 80-cm soil column with sorbed phase concentration in the range of 1~9 mg/g. The advective – dispersive transport equation (used in this study) without considering heterogeneity of velocity distribution in the soil column, can not effectively describe ”tailing” observed in the experiment. Furthermore, it is found that change of the parameter, empty bed collision efficiency, can greatly affect the sorbed phase concentrotion levels of emulsified oil.
誌謝 .............................................................................. Ⅰ
摘要 .............................................................................. Ⅲ
Abstract ………………………………………………………….. Ⅴ
目錄 ………………………………………………………….. Ⅵ
表目錄 ………………………………………………………….. Ⅶ
圖目錄 ………………………………………………………….. Ⅷ
第一章 緒論…………………………………………………….. 1
1.1 前言…………………………………………………….. 1
1.2 研究背景……………………………………………….. 4
1.3 文獻回顧……………………………………………….. 9
1.4 研究目的……………………………………………….. 11
第二章 研究方法……………………………………………….. 13
2.1 地下水污染傳輸模式–MODFLOW………………… 13
2.1.1 基本原理………………………………………... 13
2.1.2 數值方法………………………………………… 14
2.1.3 MODFLOW之套件……………………………... 22
2.2 地水污染傳輸模式–RT3D………………………...... 26
2.2.1 基本原理………………………………………… 26
2.2.2 數學方法……………………………………….. 27
2.2.3 輸入套件………………………………………… 35
第三章 模擬研究……………………………………………….. 39
3.1 模擬場景………………………………………………... 39
3.2 MODFLO的設定………………………………………. 44
3.3 RT3D的修改與設定…………………………………… 46
3.4 質量守恆分析………………………………………….. 49
3.5 敏感度分析……………………………………………… 49
第四章 結果與討論……………………………………………… 50
4.1 質量守恆模擬…………………………………………… 50
4.2 乳化油滴傳輸實驗的模擬…………………………….. 54
4.3 敏感度分析……………………………………………… 61
第五章 結論與建議……………………………………………… 65
5.1 結論………………………………………………………. 65
5.2 建議………………………………………………………. 66
第六章 參考文獻…………………………………………………. 67
1. Coulibaly K.M., Long C.M., Borden R.C., 2006. Transport of Edible Oil Emulsions in Clayey Sands: One-Dimensional Column Results and Model Development, 230-237.
2. Division E.S., Laboratory L.B.N., Road o.c.,2007, On the transport of emulsions in porous media, Journal of Colloid and Interface Science,313,1-4.
3. Srinivasan V., Clement T.P., 2008, Analytical solutions for sequentially coupled one-dimensional reactive transport problems – Part II: Special cases, implementation and testing, Advances in Water Resources, 31, 219-232.
4. Clement T.P.,Gautam T.R., Lee K.K., Truex M.J., Davis G.B., 2004, Modeling of DNAPL-Dissolution, Rate-Limited Sorption and Biodegradation Reactions in Groundwater Systems, Bioremediation Journal, 8(1-2), 47-64.
5. Johnson P.R., Sun N., Elimelech M., 1996, Colloid Transport in Geochemically Heterogeneous Porous Media: Modeling and Measurements, Environ Sci Technol, 30, 3284-3293.
6. Johnson C.D., Truex M.J., Clement T.P.,2006, Natural and Enhanced Attenuation of Chlorinated Solvents Using RT3D, Prepared forthe U.S. Department of Energy.
7. Becker, M. W., Collins S. A., Metge D. W., Harvey R. W., Shapiro A. M., 2004, Effect of cell physicochemical characteristics and motility on bacterial transport in groundwater.J Contam Hydrol., 69, 195-213.
8. Bengtsson G., Ekere L., 2001, Predicting sorption of groundwater bacteria from size distribution, surface area, and magnetic susceptibility of soil particles,Water Resour. Res., 37, 1795-1812.
9. Tsou M.S., Tu K., Kool J., Neville C.J., Young S.C., 2003,Comparison of Three Numerical Models for Chain-Decay Transport Simulation at a Closed AFB in Texas, MODFLOW 2003 Conference, Golden, Colorado, September 17-19, 2003.
10. Soo H., Radke C. J, 1984, The flow mechanism of dilute stable emulsions in porous media, Ind. Eng. Chem. Fundam., 23(3), 342-347.
11. Soo H., Radke C. J, 1986a, A filtration model for the flow of
dilute stable emulsions in porous media. I: Theory, Chem. Eng. Sci., 41, 263-272.
12. Soo H., Radke C. J. 1986b, A filtration model for the flow of
dilute stable emulsions in porous media. II: Parameter evaluation and estimation, Chem. Eng. Sci., 41, 273-281.
13. Cortis A., Ghezzehei T.A., 2007, On the transport of emulsions in porous media, Journal of Colloid and Interface Science., 313, 1-4.
14. Clement T.P., 1997, A modular computer code for simulating reactive multispecies transport in 3-Dimensional groundwater systems.
15. 翁琮哲,地下水人工補助幼臚妤敦Q,私立中原大學土木工程學系碩士論文,2001。
16. 梁書豪、高志明、葉琮裕、陳逸明、楊瑞興、何曉蓉,以乳化型釋氫基質處理受三氯乙烯污染之地下水,2010。
17. 朱玉水、段存俊,MT3D–通用的三維地下水污染物傳輸數值模式,東華大學理工學院報,第28期,2005。
18. 林財富、洪旭文、陳彥旻,國內外大型土壤及地下水復育槽之初步介紹,台灣土壤及地下水環境保護協會簡訊,第17期,2005。
19. 陳鴻泉、呂文賢、黃世傑、張凱茹,國內外大型土壤及地下水復育槽之初步介紹,台灣土壤及地下水環境保護協會簡訊,第24期,2007。
20. 林耀東、張書奇、游宇涵、陳姿文,奈米乳化液在地下水層中傳輸模擬探討,2010。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔