跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/12 02:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳昭羽
研究生(外文):Zhao-yu Chen
論文名稱:加速碳酸鹽反應對垃圾焚化灰渣重金屬溶出特性影響之研究
論文名稱(外文):Effects on leaching characteristics of heavy metals in municipal solid waste incinerator residues by accelerated carbonation
指導教授:江康鈺江康鈺引用關係
學位類別:碩士
校院名稱:逢甲大學
系所名稱:環境工程與科學所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:170
中文關鍵詞:二氧化碳重金屬加速碳酸鹽反應焚化飛灰焚化底渣
外文關鍵詞:incinerator bottom ashincinerator fly ashaccelerated carbonationheavy metalscarbon dioxide
相關次數:
  • 被引用被引用:4
  • 點閱點閱:350
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用加速碳酸鹽化反應技術,探討垃圾焚化底渣及飛灰(以下簡稱灰渣)重金屬溶出特性及穩定化之影響,研究過程分別控制焚化灰渣含水率為25%,及改變不同二氧化碳濃度(10%及20%)及焚化飛灰添加比例(10%、20%及30%)等試驗條件。研究同時進一步利用灰渣之熱重分析結果,建立加速碳酸鹽化之反應動力參數,以及評估加速碳酸鹽化反應過程,灰渣對二氧化碳之反應捕捉效果,以期進一步建立焚化灰渣加速碳酸鹽化反應之減碳效益。研究結果顯示,較高之CO2濃度有助於灰渣加速碳酸鹽化反應之進行,並縮短灰渣達到穩定化所需之時間;而飛灰添加比例越高,其因飛灰保水能力較佳,灰渣之碳酸鹽化反應程度較佳,灰渣形成之碳酸鈣(CaCO3)含量越高,灰渣之穩定化效果更佳。另根據加速碳酸鹽化反應後灰渣之重金屬溶出濃度分析結果,除重金屬銅之溶出濃度從0.42±0.02 mg/l增加至1.12±0.06 mg/l外,其餘試驗重金屬鋅、鎘及鉛之溶出濃度均呈現降低之趨勢。根據MINTEQA2模式預測之灰渣重金屬可能形成之物種可知,重金屬銅因形成Cu2OCl2(黑氯銅礦,Melanothallite),使其飽和指數降低(SI值為-19.361),亦即該物種之溶解度增加,致使重金屬銅之溶出濃度有增加之潛勢。整體而言,加速碳酸鹽化反應後灰渣之重金屬溶出濃度,均符合法規管制標準之規範要求,試驗之有害灰渣均已達到穩定無害化之效果,並增加後續灰渣資源再利用之應用途徑。
根據碳酸鹽化反應動力之分析結果顯示,在高CO2濃度之條件下,灰渣粒徑越小,其碳酸鹽化反應程度越差,主要係因灰渣粒徑越小,其孔隙率相對較低,而在碳酸鹽化反應過程,因高濃度之CO2提昇碳酸鹽化反應速率,使灰渣表面產生碳酸鈣結晶層並阻塞孔隙,進而影響CO¬2之擴散反應。根據反應活化能之分析結果可知,較小之灰渣粒徑(介於0.074-0.149 mm),其具有較低之反應活化能(介於17 kJ/mole至76 kJ/mole),而當灰渣粒徑增加至0.149-0.420 mm時,其反應活化能亦約增加為62 kJ/mole至159 kJ/mole。本研究初步利用實驗過程之pH及二氧化碳變化之關係,建立完成加速碳酸鹽化反應之穩定化指標(ΣΔpH/ΣΔCO2/Ca),結果顯示焚化灰渣碳酸鹽化反應後之穩定化指標約介於1.2至2.6間。另根據實驗過程CO2¬累積變化率之結果顯示,當CO2濃度為10%之試驗條件下,加速碳酸鹽化反應過程,每100克灰渣約可捕捉43-45克之CO2。進一步推估未來若利用加速碳酸鹽化技術處理台灣各焚化廠之灰渣,則推估每年至少可有31萬至37萬噸之二氧化碳捕捉及減量效益。整體而言,本研究結果可進一步提供加速碳酸鹽化後焚化灰渣後續資源再利用技術選擇之依據,同時亦可作為加速碳酸鹽化技術對二氧化碳捕捉及減量效益之評估參考。
This research investigated that the accelerated carbonation reaction effects on leaching characteristics of heavy metals and stabilization of municipal solid waste incineration (MSWI) bottom ash and fly ash (referred to as ash). The experiments were conducted by controlling 25 weight percentage of moisture content of ash, carbon dioxide concentration (10% and 20%) and fly ash addition ratio (10%, 20% and 30%), respectively. This research was also established the kinetics parameters of accelerated carbonation reaction using Thermogravimetric analysis (TGA) method, and evaluated the carbon reduction and/or carbon dioxide capture efficiency by MSWI ash during accelerated carbonation reaction process. The experimental results showed that higher CO2 concentration will help to accelerate the carbonate reaction, and to reduce the required time for MSWI ash stabilization. Meanwhile, the higher MSWI fly ash addition ratio will enhance the carbonate reaction rate and ash stabilization degree, due to its good moisture holding capacity. Besides, the calcium carbonate (CaCO3) formed in ash was more that the ash stabilization will be better. According to results of leaching concentration of tested heavy metals of ashes by accelerated carbonation, the tested heavy metals, such as zinc (Zn), cadmium (Cd) and lead (Pb), their leaching concentration decreased with carbonate reaction time increased. However, the copper (Cu) leaching concentration increased from 0.42±0.02 mg/l to 1.12±0.06 mg/l with an increase the carbonation time. According to results of MINTEQA2 model for prediction of heavy metals speciation formed in ash, the Cu speciation will be Cu2OCl2 (Melanothallite) that it will reduce the saturation index (SI: -19.361) and increase the solubility of ash. Therefore, the Cu leaching concentration will increase after accelerated carbonation reaction. In summary, the toxicity characteristics leaching procedure (TCLP) concentration of tested metals in accelerated carbonation ash were all in compliance with the current Taiwan’s regulation thresholds. All tested hazardous MSWI ashes have converted to non-hazardous ashes by accelerated carbonation process that will promote the potential application in further resourcification and reutilization of ash.
According to analysis results of carbonate reaction kinetic, the slow carbonation reaction occurred at controlling of high CO2 concentration and smaller particle size of ash. This is due to the smaller particle size of ash has a low relatively porosity. When higher CO2 concentration will be enhanced the carbonation reaction rate and then formed calcium carbonate crystals on the ash surface. It could clog the ash pores and inhibit the diffusion of CO2. According to the analysis results of activation energy, the smaller particle size of ashes (ranged between 0.074 mm and 0.149 mm) has a lower activation energy (ranged between 17 kJ/mole and 76 kJ/mole). However, when the particle size increased to 0.149-0.420 mm, its activation energy will be increased approximately between 62 kJ/mole and 159 kJ/mole.
According to the relationships between pH and carbon dioxide variation, the stabilization index (ΣΔpH/ΣΔCO2/Ca) for evaluating accelerated carbonation reaction was established. The results of stabilization index of accelerated carbonation ash were approximately between 1.2 and 2.6. Based on the results of accumulated amounts of CO2 uptake by MSWI ash, in the case of 10% CO2 concentration, every 100 grams of MSWI ash could capture the amounts of CO2 were approximately ranged between 43 grams and 45 grams during the accelerated carbonation. The overall effectiveness of carbon dioxide capture and reduction was also estimated approximately between 310 thousands and 370 thousands every year in Taiwan if all MSWI ash treated by accelerated carbonation process. In summary, the results of this study can provide further information for selection of potential technology in resourcification and reutilization of accelerated carbonation ash, but will also evaluate the benefits of carbon dioxide capture and reduction by accelerated carbonation process.
誌謝…………………………………………………………………… i
摘要…………………………………………………………………… ii
Abstract……………………………………………………………… iv
目錄……………………………………………………………………vii
圖目錄………………………………………………………………… ix
表目錄…………………………………………………………………xii
第一章 前言………………………………………………………… 1
第二章 文獻回顧…………………………………………………… 4
2-1 碳酸鹽化反應之原理………………………………………… 4
2-1-1 CO2反應性………………………………………………… 6
2-1-2 CO2擴散性………………………………………………… 10
2-2 碳酸鹽化技術之應用…………………………………………… 13
2-2-1 利用碳酸鹽化技術處理工業廢棄物……………………… 13
2-2-2 利用碳酸鹽化技術處理土壤及廢水……………………… 20
2-2-3 利用碳酸鹽化技術捕捉CO2.......................... 21
2-3 碳酸鹽化反應動力學模式……………………………………… 23
第三章 實驗材料與方法……………………………………………… 30
3-1 實驗材料………………………………………………………… 30
3-2 實驗方法及條件………………………………………………… 30
3-2-1 灰渣基本性質分析…………………………………………. 31
3-2-2 灰渣碳酸鹽化之管柱試驗…………………………………. 31
3-2-3 灰渣加速碳酸鹽化反應之動力學試驗…………………… 33
3-3 分析儀器與方法………………………………………………… 35
3-3-1 分析儀器……………………………………………………. 35
3-3-2 分析方法……………………………………………………. 36
第四章 結果與討論………………………………………………… 44
4-1 灰渣基本性質分析結果………………………………………… 44
4-2 加速碳酸鹽化反應對焚化灰渣特性變化之影響……………… 49
4-2-1 碳酸鹽化反應對灰渣pH變化之影響…………………….. 49
4-2-2 碳酸鹽化反應對灰渣含水率及灼燒減量變化之影響……. 61
4-3 焚化灰渣碳酸鹽化反應之評估指標…………………………… 70
4-4 碳酸鹽化反應後灰渣重金屬溶出特性及其形成物種………… 81
4-4-1 灰渣之毒性特性溶出濃度分析結果………………………. 81
4-4-2 碳酸鹽化反應後之灰渣物種鑑定及微觀結構之分析結果 90
4-4-3 重金屬形成物種之MINTEQA2模擬結果……………….. 93
4-5 加速碳酸鹽化反應動力學之分析結果……………………… 114
4-5-1 加速碳酸鹽反應程度之評估………………………………. 115
4-5-2 灰渣碳酸鈣生成量之分析結果……………………………. 135
4-5-3 灰渣碳酸鹽化反應活化能之推估結果……………………. 142
第五章 結論與建議………………………………………………… 146
5-1 結論…………………………………………………………… 146
5-1-1 加速碳酸鹽化反應對灰渣特性變化之影響……………… 146
5-1-2 加速碳酸鹽化反應對灰渣重金屬溶出特性之影響……… 147
5-1-3 灰渣碳酸鹽化反應之穩定化指標及二氧化碳捕捉效率…. 148
5-1-4 灰渣加速碳酸鹽化反應動力分析結果…………………… 148
5-2 建議………………………………………………………………149
參考文獻………………………………………………………………150
Arickx, A., De Borger, V., Van Gerven, T., Vandecasteele, C., 2009. Effect of carbonation on the leaching of organic carbon and of copper from MSWI bottom ash. Waste Management 30, 1296-1302.
Baciocchi, R., Costa, G., Di Bartolomeo, E., Polettini, A., Pomi, R., 2009. The effects of accelerated carbonation on CO2 uptake and metal release from incineration APC residues. Waste Management 29, 2994-3003.
Baciocchi, R., Costa, G., Lategano, E., Marini, C., Polettini, A., Pomi, R., Postorino, P., Rocca, S., 2009. Accelerated carbonation of different size fractions of bottom ash from RDF incineration. Waste Management 30, 1310-1317.
Baciocchi, R., Costa, G., Polettini, A., Pomi, R., Prigiobbe, V., 2009. Comparison of different reaction routes for carbonation of APC residues. Energy Procedia 1, 4851-4858.
Bhatia, S.K., Perlmutter, D.D., 1983. Effect of the product layer on the kinetics of the CO2-lime reaction. AIChE Journal 29, 79-86.
Chimenos, J.M., Fernandez, A.I., Miralles, L., Segraa, M., Espiell, F., 2003. Short-term natural weathering of MSWI bottom ash as a function of particle size. Waste Management 23, 887-895.
Diener, S., Andreas, L., Herrmann, I., Ecke, H., Lagerkvist, A., 2010. Accelerated carbonation of steel slags in a landfill cover construction. Waste Management 30, 132-139.
Fernandez Bertos, M., Simons, S.J.R., Hills, C.D., Carey, P.J., 2004. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. Journal of Hazardous Materials B112, 193-205.
Grasa, G.S., Carlos Abanades, J., Alonso, M., Gonzalez, B., 2008. Reactivity of highly cycled particles of CaO in a carbonation/calcinations loop. Chemical Engineering Journal 137, 561-567.
Gunning, P.J., Hills, C.D., Carey, P.J., 2010. Accelerated carbonation treatment of industrial wastes. Waste Management 30, 1081-1090.
Hyks, J., Astrup, T., 2009. Influence of operational conditions, waste input and ageing on contaminant leaching from waste incinerator bottom ash:A full-scale study. Chemoshere 76, 1178-1184.
Huntzinger, D.N., Gierke, J.S., Sutter, L.L., Komar Kawatra, S., Eisele, T.C., 2009. Mineral carbonation for carbon sequestration in cement kiln dust from waste piles. Journal of Hazardous Materials 168, 31-37.
Jiang, J.J., Du, X.J., Chen, M.Z., Zhang, C., 2009. Continuous CO2 capture and MSWI fly ash stabilization, utilizing novel dynamic equipment. Environmental Pollution 11, 1-6.
Jiang, J., Chen, M., Zhang, Y., Xu, X., 2009. Pb stabilization in fresh fly ash from municipal solid waste incinerator using accelerated carbonation technology. Journal of Hazardous Materials 161, 1046-1051.
Lee, D.K., 2004. An apparent kinetic model for the carbonation of calcium oxide by carbon dioxide. Chemical Engineering Journal 100, 71-77.
Lim, M., Han, G.C., Ahn, J.W., You, K.S., 2010. Environmental remediation and conversion of carbon dioxide (CO2) into useful green products by accelerated carbonation technology. International Journal of Environmental Research and Public Health 7, 203-228.
Nikulshina, V., Galvez, M.E., Steinfeld, A., 2007. Kinetic analysis of the carbonation reactions for the capture of CO2 from air via the Ca(OH)2-CaCO3-CaO solar thermochemical cycle. Chemical Engineering Joutnal 129, 75-83.
Nikulshina, V., Steinfeld, A., 2009. CO2 capture from air via CaO-carbonation using a solar-driven fluidized bed reactor-Effect of temperature and water vapor concentration. Chemical Engineering Joutnal 155, 867-873.
Olsson, S., Gustafsson, J.P., Berggren Kleja, D., Bendz, D., Persson, I., 2009. Metal leaching from MSWI bottom ash as affected by salt or dissolved organic matter. Waste Management 29, 506-512.
Perigiobbe, V., Polettini, A., Baciocchi, R., 2009. Gas-solid carbonation kinetics of Air Pollution Control residues for CO2 storage. Chemical Engineering Journal 148, 270-278.
Quina, M.J., Bordado, J.C.M., Quinta-Ferreira, R.M., 2009. The influence of pH on the leaching behavior of inorganic components from municipal solid waste APC residues. Waste Management 29, 2483-2493.
Sun, J., Fernandez Bertos, M., Simons, S.J.R., 2008. Kinetic study of accelerated carbonation of municipal solid waste incinerator air pollution control residues for sequestration of flue gas CO2. Energy and Environmental Science 1, 370-377.
Suer, P., Lindqvist, J.E., Arm, M., Frogner-Kockum, P., 2009. Reproducing ten years of road ageing-Accelerated carbonation and leaching of EAF steel slag. Science of the Total Environment 407, 5110-5118.
Sivula, L., Ilander, A., Vaisanen, A., Rintala, J., 2010. Weathering of gasification and grate bottom ash in anaerobic conditions. Journal of Hazardous Materials 174, 344-351.
Van Zomeren, A., Comans, R.N.J., 2009. Carbon speciation in municipal solid waste incinerator (MSWI) bottom ash in relation to facilitated metal leaching. Waste Management 29, 2059-2064.
Yadav, V.S., Prasad, M., Khan, J., Amritphale, S.S., Singh, M., Raju, C.B., 2010. Sequestration of carbon dioxide (CO2) using red mud. Journal of Hazardous Materials 176, 1044-1050.
Zhang, H., He, P.J., Shao, L.M., Lee, D.J., 2008. Temporary stabilization of air pollution control residues. Waste Management 28, 509-517.
行政院環境保護署,2010。廢棄物清理法。
行政院環境保護署,2010。中華民國環境保護統計年報。
江康鈺、陳虹汶、劉芳妤、周挺z、簡光勵、楊叢印、陳鐿夫,2009。加速熟化技術提昇都市垃圾焚化飛灰重金屬穩定性之研究,第二十一屆中華民國環境工程學會廢棄物處理技術研討會,403,雲林。
江康鈺、周挺z、簡光勵、楊叢印、陳鐿夫,2009。都市垃圾焚化底渣熟化反應提升穩定重金屬穩定性評估研究,第二十一屆中華民國環境工程學會廢棄物處理技術研討會,402,雲林。
江康鈺、王啟宗,2008。都市垃圾焚化飛灰與淨水污泥共同燒節產物之動力及材料特性研究,第二十屆中華民國環境工程學會廢棄物處理技術研討會,315,台北。
李志偉、李明國、孫常榮、高思懷,2008。水萃處理產生之細粒徑焚化底渣以磷酸穩定配合燒結資源化之研究,第二十屆中華民國環境工程學會廢棄物處理技術研討會,310,台北。
林健榮、黃靖云、戴年禧、張書瑋,2008。熟化程序對都市垃圾焚化底渣中重金屬穩定化之影響,第二十屆中華民國環境工程學會廢棄物處理技術研討會,366,台北。
林凱隆、賴濯琦、張文凱、鄭敬融,2008。工業廢棄物焚化底渣燒製環保地磚之研究,第二十屆中華民國環境工程學會廢棄物處理技術研討會,321,台北。
施承享,2008。利用水洗處理程序提昇焚化底渣熟化反應效果之評估研究,逢甲大學碩士論文。逢甲大學研發處共同貴重儀器中心,儀器基本原理。
劉瓊玲、孫常榮、高思懷、王雅慧、李明國,2008。都市垃圾焚化飛灰穩定燒結再利用技術之研發,第二十屆中華民國環境工程學會廢棄物處理技術研討會,344,台北。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top