跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/07 04:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭泳嘉
研究生(外文):Yong-jia Peng
論文名稱:應用於K頻帶之低雜訊放大器與功率放大器的設計與製作
論文名稱(外文):Design and Implementation of the Low Noise Amplifier and the Power Amplifier for K-band Application
指導教授:何滿龍何滿龍引用關係
指導教授(外文):Man-long Her
學位類別:碩士
校院名稱:逢甲大學
系所名稱:通訊工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:107
中文關鍵詞:低雜訊放大器功率放大器
外文關鍵詞:Low Noise AmplifierPower Amplifier
相關次數:
  • 被引用被引用:0
  • 點閱點閱:301
  • 評分評分:
  • 下載下載:77
  • 收藏至我的研究室書目清單書目收藏:0
近年來無線通訊系統發展迅速,各項無線通訊產品已經融入生活所常見的電子產品,K-Band(18 GHz ~ 27 GHz)的應用也越來越廣泛。我國NCC則是規畫21 GHz為HDTV衛星廣播頻段以及24.125 ± 0.125 GHz提供工程、科學、醫學設備使用等等,利用K-Band頻段的技術及應用。在這篇論文中,我們將專注於射頻前端低雜訊放大器(LNA)及功率放大器(PA)。
本篇論文的設計流程,電路模擬,電路佈局與電路量測都是以互補式金氧半(CMOS) 0.18 μm製程。
在第一個電路設計中,我們設計了一個低雜訊放大器,其主要應用在K-band技術,而主要架構是串接,串接可以提高增益。我們利用源極退化電感來增加穩定度及RC回授電路來保持平坦度。在量測結果中,輸入匹配(S11)最小值為-17 dB,輸出匹配(S22)最小值為-17.62 dB,增益(S21)最大值為6.67 dB,隔離度(S12)為-28.67 ~ -30.57 dB,雜訊指數(NF)最小值為8.05 dB,全頻帶無條件穩定,P1dB 在18 GHz為0 dBm,在22 GHz為0 dBm。
在第二個電路設計中,我們設計了一個低雜訊放大器,其主要應用在K-band技術。主要架構雖然是串接,但在此次電路裡我們利用gate-drain capacitance CGD neutralization架構來降低雜訊及提高增益。在量測結果中,輸入匹配(S11)最小值為-19.04 dB,輸出匹配(S22)最小值為-19.03 dB,增益(S21)最大值為5.48 dB,隔離度(S12)為-29.43 ~ -32.12 dB,雜訊指數(NF)最小值為4.86 dB,全頻帶無條件穩定,P1dB 在18 GHz為-9 dBm,在22 GHz為-5 dBm。
在第三個電路設計中,我們設計ㄧ個18 GHz全積體化的CMOS

功率放大器,使用並聯電晶體的技術來提升整體輸出功率,以彌補單一CMOS電晶體輸出功率較低之缺點,其量測之最大功率增益為7.3 dB、輸入之1 dB增益壓縮點為1 dBm、輸出之1 dB增益壓縮點為6.9 dBm與最大輸出功率為9.21 dBm。
在第四個電路設計中,我們設計ㄧ個20 ~ 24 GHz全積體化的CMOS功率放大器。其模擬結果之最大功率增益為20.77 dB、在22 GHz時其輸入之1 dB增益壓縮點為-5 dBm、輸出之1 dB增益壓縮點為13.4 dBm與最大輸出功率為16.23 dBm。
The rapid development of wireless communication systems in recent years, various wireless communication products have been integrated into the life and become a common electronic product, and K-band''s application (18 GHz to 27 GHz) is more and more extensively. Taiwan NCC is planning to use 21 GHz for Hi-definite TV (HDTV) satellite broadcasting, as well as 24.125 ± 0.125 GHz band for the industry, science, the use of medical equipment, etc., using K-band frequency band of the technology and applications. In this thesis, we will focus on the radio frequency front-end low noise amplifier (LNA) and power amplifier (PA).
This thesis, from the design flow, circuit simulation, layout of the circuit, and the circuit measurement are based on the TSMC 0.18 μm standard.
In the first circuit design, we designed a LNA for the K-Band technique, the main schematic is the cascade and cascade circuits can enhance the gain. We used the source degeneration for stabilization of the inductor, and used the RC feedback network to maintain the flatness. For the measured, the minimum value of the input matching (S11) is -17 dB, the minimum value of the output matching (S22) is -17.62 dB, the maximum value of the gain (S21) is 6.67 dB, the isolation (S12) is -28.67 ~ -30.57 dB, the minimum value of the noise figure (NF) is 8.05 dB, the stable is unconditional stable, the P1dB is 0 dBm @ 18 GHz, 0 dBm @ 22 GHz.
In the second circuit design, we designed a LNA for the K-Band technique, the main schematic is the cascade and cascade circuits can enhance the gain. We used the gate-drain capacitance CGD neutralization structure to reduce the noise figure and enhance the gain. For the measured, the minimum value of the input matching (S11) is -19.04 dB, the minimum value of the output matching (S22) is -19.03 dB, the maximum value of the gain (S21) is 5.48 dB, the isolation (S12) is-29.43 ~ -32.12 dB, the minimum value of the noise figure (NF) is 4.86 dB, the stable is unconditional stable, the P1dB is -9 dBm @ 18 GHz, -5 dBm @ 22 GHz.
In the third circuit design, we designed a fully integrated CMOS power amplifier for 18 GHz. The parallel transistors technique was proposed to enhance the maximum output power. The measured maximum power gain is 7.3 dB, the IP1dB is 1 dBm, the OP1dB is 6.9 dBm and the maximum output power is 9.21 dBm.
In the fourth circuit design, we designed a fully integrated CMOS power amplifier for 20 ~ 24 GHz. The simulated maximum power gain is 7.3 dB, the IP1dB is 1 dBm, the OP1dB is 6.9 dBm and the maximum output power is 9.21 dBm.
Abstract (in chinese) I
Abstract III
Content V
Figure List VIII
Table List XIII

Chapter 1 Introduction 1
1.1 Research motivation 1
1.1.1 Research motivation for K-Band 1
1.1.2 Research motivation for low noise amplifier 2
1.1.3 Research motivation for power amplifier 2
1.2 Thesis organization 3
Chapter 2 Basic Concepts of CMOS Amplifier Design 4
2.1 Overview 4
2.2 Basic concept of amplifier 4
2.2.1 Dynamic rang 4
2.2.2 1-dB compression point 5
2.2.3 Third-Order intercept point 5
2.3 Design concepts of power amplifier 8
2.3.1 Classification of power amplifier 9
2.3.2 Knee effect of MOS transistor 10
2.3.3 Efficiency 11
2.3.4 Matching Considerations 12
2.4 Noise figure 14
2.4.1 The Concept of Noise Figure 15
2.4.2 The Noise Figure of an Amplifier Circuit 16
Chapter 3 Basic Schematic of the Amplifier 19
3.1 Introduction of the amplifier schematic 19
3.2 Cascode schematic 19
3.3 Feedback 21
3.4 Feedback concept 22
3.5 Feedback characteristic 22
3.6 Basic MOSFET current source 24
3.7 Source follower 26
3.8 Design flow of the circuit 28
Chapter 4 Design and Implementation of the Ultra Wideband Low Noise Amplifier for K-Band 29
4.1 Design and analysis the K-Band LNA 29
4.1.1 Main schematic of the LNA 29
4.1.2 Transformer feedback 30
4.1.3 Analysis of the cascade stage 33
4.1.4 Simulation methods of the K-Band LNA 34
4.1.5 Modification of the methods of the simulation 34
4.1.6 Modification of the signal passes loss 36
4.1.7 Enhancement of the amount of the bypass capacitor 37
4.1.8 Modification of the inductors shape 37
4.1.9 Modification of the pads 37
4.1.10 Simulation results 38
4.1.11 Layout of the K-Band LNA 44
4.1.12 Performance summary of the K-Band LNA 45
4.1.13 Consider for measure 45
4.1.14 Measured results 48
4.2 Modification of the K-Band LNA 53
4.2.1 Main schematic of the LNA 53
4.2.2 Inductor 53
4.2.3 Gate-drain capacitance CGD neutralization 55
4.2.4 Simulated results 56
4.2.5 Performance summary of the K-Band LNA 62
4.2.6 Consider for measure 62
4.2.7 Measured results 65
Chapter 5 Design and Implementation of the Fully Integrated COMS Power Amplifier 71
5.1 Design and analysis of the 18 GHz PA 71
5.1.1 Main schematic of the PA 71
5.1.2 Load diode by the MOS 72
5.1.3 Modification of the diode 73
5.1.4 Simulated results 76
5.1.5 Layout of the 18 GHz power amplifier 81
5.1.6 Summary of the WiMAX Power Amplifier Design 82
5.1.7 Measured results 83
5.2 Design and analysis of the 20 ~ 24 GHz PA 87
5.2.1 Main schematic of the PA 87
5.2.2 Simulated results 89
5.2.3 Layout of the 20 ~ 24 GHz power amplifier 97
5.2.4 Summary of the WiMAX Power Amplifier Design 98
Chapter 6 Conclusions 100
6.1 Summary of the K-band LNA 100
6.1.1 Summary of the first K-band LNA 100
6.1.2 Summary of the second K-band LNA 101
6.2 Summary of CMOS Power Amplifiers Design 102
6.2.1 Summary of the 18 GHz PA 102
6.2.2 Summary of the 20 ~ 24 GHz PA 103
References 105
[1]Furukawa Electric developed the using 26 GHz Band K-band car obstacle detection radar.
http://big5.nikkeibp.com.cn/news/auto/48519-20091023.html
[2]Cameras + radar, so change line more secure (1): U.S. and European car manufacturers have equipped.
http://big5.nikkeibp.com.cn/news/auto/45124-20090308.html
[3]【ATI2009】 “24 GHz radar can detect pedestrians,” Hella Japan delivered a speech on the microwave radar.
http://big5.nikkeibp.com.cn/news/auto/47184-20090724.html
[4]【NHK Technology Research public】Super Fine Image “Super Hi-Vision” unveiled the schedule for implementation.
http://techon.nikkeibp.co.jp/article/NEWS/20050526/105124/
[5]Republic of China Ministry of Posts and Telecommunications of radio frequency allocation table.
http://www.motc.gov.tw/motchypage/dept/782/1485_Chapter6-M Hz.html.
[6]Rappaport, T. S., Wireless Communications, Upper Saddle River, NJ: Prentice Hall, 1996.
[7]Proakis, J. G., Digital Communications, 3rd ed., New York: McGraw-Hill, 1995.
[8]John Rogers, Calvin Plett, “Radio Frequency Integrated Circuit Design,” Artech House, Boston, London.
[9]Behzad Razavi, “RF MICROELECTRONICS,” PRENTICE HALL COMMUNICATIONS ENGINEERING AND EMERGING TECHNOLOGIES SERIES Theodore S. Rappaport, Series Editor.
[10]Behzad Razavi, “Design of Analog CMOS Integrated Circuits,” McGRAW-HILL INTERNATIONAL EDITION Electrical Engineering Series.
[11]Ishida, H.; Miyatsuji, K.; Tanaka, T.; Takenaka, H.; Furukawa, H.; Nishitsuji, M.; Tamura, A.; Ueda, D, “A low-current and low-distortion wideband amplifier using 0.2-μm gate MODFET fabricated by using phase-shift lithography,” Volume 48, Issue 5, May 2000 Page(s):771 – 776.
[12]Guillermo Gonzalez, “MICROWAVE TRANSISTOR AMPLIFIERS Analysis and Design,” 2nd edition, Prentice Hall.
[13]Adel S. Sedra, Kenneth C. Smith, “Microelectronic CIRCUITS, FIFTH EDITION,” New York Oxford UNIVERSITY PRESS 2004
[14]Jaewon Kim; Byunghoo Jung; Cheung, P.; Harjani, R. “Novel CMOS low-loss transmission line structure,” 19-22 Sept. 2004 Page(s):235 - 238.
[15]T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd ed. Cambridge, U.K.: Cambridge Univ. Press, 2004.
[16]B. Razavi, “A 60 GHz direct-conversion CMOS receiver,” in Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2005, pp. 400–401.
[17]Shi-Ming Wang, “Development of IS-95 CDMA RF Transceiver Including a Power Amplifier MMIC Design,” 2000, 06 Department of Electrical Engineering, Notional Cheng Kung University.
[18]Cheng-Chi Yen, “2.4 GHz ISM-Band CMOS Transceiver RF Front-end and CMOS PA with Diode Linearizer,” Department of Electrical Engineering, National Cheng Kung University.
[19]Chun-Chieh Chiu, “Design and Implementation of RF Front-end Circuit WiMAX 3.5 GHz Receiver,” 2007, 06 Department of Communications Engineering, Feng Chia University.
[20]Wei-Ting Lee, “Research on 2.4-GHz CMOS Single-Mixer Transceiver/5-GHz PA RFIC and High-Q Spiral Inductor for Wireless Communication Applications,” 2004, 06 Department of Electrical Engineering, Notional Cheng Kung University.
[21] Yu-Siang Chen, “Design and Implementation of the CMOS RF Front-end Amplifier for WiMAX System Application,” 2008, 06 Department of Communications Engineering, Feng Chia University.
[22]Hsin-Hung Lin, “Design and Implementation of the RF Low Noise Amplifier Circuits Using CMOS 0.18 μm process,” 2009, 06 Department of Communications Engineering, Feng Chia University.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊