跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/06 00:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉宴容
研究生(外文):Yeh Yen-Jung
論文名稱:探討大豆沙拉油油炸後之品質及羰基化合物生成與其受幾丁聚醣-葡萄糖複合物之抑制效果
論文名稱(外文):Studies on the Formation of Carbonyl Compounds and Quality of Soybean Salad Oil during Frying and the Inhibitory Effect of Chitosan-glucose Complexes
指導教授:陳烱堂
指導教授(外文):Chien John-Tung
口試委員:賴喜美郭孟怡
口試委員(外文):Lai Hsi-MeiKuo Meng-I
口試日期:2012-06-20
學位類別:碩士
校院名稱:輔仁大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:80
中文關鍵詞:大豆沙拉油油炸幾丁聚醣-葡萄糖複合物羰基化合物
外文關鍵詞:soybean salad oilfryingchitosan-glucose complexescarbonyl compounds
相關次數:
  • 被引用被引用:1
  • 點閱點閱:275
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
油炸可提供食品良好風味、香氣及酥脆質地等。但持續在高溫及氧氣和水份的油炸過程會使油進行自氧化、水解及熱裂解等反應,並生成有毒的羰基化合物 (carbonyl compounds, CCs)。本研究將大豆沙拉油在180℃加熱下加水通氧以模擬食品油炸之系統,測定油炸後之大豆沙拉油品質變化與CCs的生成,並將幾丁聚醣-葡萄糖複合物 (chitosan-glucose complexes, CG) 添加於油炸油中混合加熱,探討油炸油中CCs受CG之抑制效果。大豆沙拉油在180℃通氧加水加熱時,TBARS、酸價及總極性物質皆隨加熱時間而增加。加熱6小時之油炸油之TBARS、酸價及總極性物質分別為700.4 nmol MDA/g oil、0.9 mg KOH/g oil及18.0%,而且加熱6小時油炸油經一次CG處理 (添加20% 之1% CG在120℃共熱),TBARS、酸價及總極性物質顯著下降了37.7、77.8及15%。TBARS、酸價及總極性物質於加熱12小時達最高值,分別為1134.9 nmol MDA/g oil、1.9 mg KOH/g oil及24%。經三次CG處理之加熱12小時油炸油,TBARS及酸價分別顯著下降了46.9及68.4%。加熱2小時之油炸油所產生的CCs依序為2,4-癸二烯醛、己醛、4-羥基-2-己烯醛、2-庚烯醛、2-壬烯醛、辛醛、2-丁酮、丙烯醛、乙醛,加熱2小時油炸油經一次CG處理時,以丙烯醛、2-丁酮、辛醛及2,4-癸二烯醛等受CG抑制效果較顯著,其下降百分率分別為40.8、40.4、59.1及60.9%。加熱6小時之油炸油則新生成了丁醛及戊醛。加熱6小時油炸油經兩次CG處理時則以乙醛、丙烯醛、己醛、2-庚烯醛具有最大的抑制效果,其抑制百分率分別為62.0、67.5、54.1 及54.8%。加熱12小時之油炸油,所產生的CCs顯著達最高量,且新生成了丙醛、戊酮及2-己烯醛等。加熱12小時油炸油並經三次CG處理則以乙醛、丙烯醛、己醛、2-庚烯醛、辛醛、2,4-癸二烯醛具有最佳的抑制效果,其降低百分率分別為87.8、69.5、71.2、74.1、85.1 及81.5%。由以上結果可知,CG的處理可有效降低油炸時大豆沙拉油中CCs含量,且具有延緩油炸油品質劣變之效果。
Deep-oil frying can provide foods with desirable flavor, color, and crispy texture. However, continuous deep-frying at high temperatures in the presence of oxygen and water may cause oil to undergo autoxidation, hydrolysis and thermal degradation, resulting in the formation of toxic carbonyl compounds (CCs). In this study, soybean salad oil was heated at 180℃with constantly adding water and purging with oxygen to simulate the deep-oil frying condition. This study aimed to investigate the quality changes and the formation of CCs in soybean salad oil during deep-oil frying, as well as inhibition of CCs in the deep frying oil as affected by adding neutral pH-soluble chitosan-glucose complexes (CG). When soybean salad oil was heated at 180℃ in presence of water and oxygen, all the TBARS, acid value and total polar compounds were increased with increases of heating time. After 6-h of heating, TBARS, acid value and total polar compounds of the frying oil were increased to 700.4 nmol MDA/g oil, 0.9 mg KOH/g oil and 18.0%, respectively. Treatment of 2-h heated oil once with 1% CG at 5:1 oil/CG ratio at 120℃ showed a large reduction in TBARS, acid value and total polar compounds with the percentage decrease of 37.7, 77.8 and 15%, respectively. After 12-h heating of oil, they all rose to the highest values of TBARS (1134.9 nmol MDA/g oil), acid value (1.9 mg KOH/g oil) and total polar compounds (24%). Treatment of 12-h heated oil trice with 1% CG gave the percentage inhibition of TBARS and acid value by 46.9 and 68.4%, respectively. After 2-h of heating, the CCs formed in the frying oil include 2,4-decadienal, haxanal, 4-hydroxy-2-hexenal, 2-heptenal, 2-nonenal, octanal, 2-butanone, acrolein, acetaldehyde. Treatment of 2-h heated oil once with 1% CG exhibited a significant reduction in acrolein, 2-butanone, octanal, and 2,4-decadienal, with the percentage decrease amounting to 40.8, 40.4, 59.1 and 60.9%, respectively. After heating soybean oil for 6 h, butanal and pentanal were newly formed in addition to the previous 9 CCs found in 2-h heated oil. Treatment of 6-h heated oil twice with 1% CG indicated a significant reduction in acetaldehyde, acrolein, haxanal and 2-heptenal with the percentage decrease of 62.0, 67.5, 54.1 and 54.8%, respectively. In 12-h heated oil, propanal, pentanone and 2-hexenal were newly formed in addition to the previous 11 CCs found in 6-h heated oil and all the CCs in the frying oil soared to the highest levels. Treatment of 12-h heated oil trice with 1% CG showed a significant reduction for acetaldehyde, acrolein, haxanal, 2-heptenal, octanal and 2,4-decadienal with a percentage decrease of 87.8, 69.5, 71.2, 74.1, 85.1 and 81.5%, respectively. These results suggest that addition of chitosan-glucose complexes in the frying soybean oil can effectively lower the toxic CCs and slow down its deterioration.
頁次
第一章 緒言……………………………………………………….. 1
第二章 文獻回顧…………………………………………………... 3
一、油炸油之特性………………………………............. 3
二、脂質氧化……………………………………………………... 6
(一)自氧化作用……………………………….......... 6
(二) 光感應的氧化作用…………………………………… 9
(三) 酵素性氧化作用…………………........... 9
三、高溫油炸脂質之劣變.…..……………………………….....10
四、脂質過氧化產物對人體的危害……………………………... 15
五、影響脂質氧化的因素………………………………………. 16
六、幾丁質與幾丁聚醣………………………………………….. 19
七、幾丁質、幾丁聚醣及其衍生物之應用……………………. 22
(一)幾丁質與幾丁聚醣在醫療上的應用…………………. 25
(二)幾丁質與幾丁聚醣在食品上的應用…………………. 25
(三)幾丁質與幾丁聚醣在廢水處理以及純化水的應用…. 30
第三章 材料與方法………………………………………………... 32
一、實驗材料…………………………………………………... 33
二、儀器設備………………………………………………....... 35
三、實驗架構………………………………………………........ 36
四、實驗方法………………………………………………....... 36
(一)高溫加熱之模擬油炸試驗……………………………. 36
(二) 幾丁聚醣-葡萄糖複合物之製備…………………….. 36
(三) 幾丁聚醣-葡萄糖複合物之處理…………………….. 36
(四) 酸價……………………………………………………. 37
(五) 過氧化價…….………………………………………… 37
(六) TBARS值……………………………………………… 38
(七) 總極性物質含量………………………………………. 39
(八) HPLC分析……………………………………………... 39
(九) 統計分析…………………………………......... 41
第四章 結果與討論………………………………………………... 42
一、大豆沙拉油品質受油炸時間及CG處理之影響……….... 42
(一) 油炸時間之影響………………………………………. 42
(二)CG處理之影響…............................ 46
二、大豆油中CCs生成量受油炸時間及CG處理之影響…... 52
(一)油炸時間之影響….......................... 52
(二)CG處理之影響………................. 62
第五章 結論…………................ 70
第六章 參考文獻…………………………………………………... 72




柯建邦。2006。不同去乙醯度膠態幾丁聚醣乳化性質之比較及其應用 於冰淇淋之研究。東海大學食品科學研究所碩士論文。
張為憲、李敏雄、呂政義、張永和、陳昭雄、孫璐西、陳怡宏、張基郁、顏國欽、林志城、林慶文。1995。食品化學。華香園出版社。72-106頁。
陳韋諳。2011。油脂、食材及濾油粉對油炸油品質影響與其標準及快速檢測法之相關性。輔仁大學食品科學研究所碩士論文。
陳靜儀。2010。卵黃模式系統在微波及高溫加熱時褐變反應及毒性物質生成之研究。輔仁大學食品科學研究所碩士論文。
蕭欣宜、吳帛儒、許朝凱、鄭維智、馮潤蘭、蔡淑貞。2011。九十九年餐飲業油炸油稽查抽驗。食品藥物研究年報 2 : 59-64.
Angelo AJ, Vercellotti JR. 1989. Inhibition of warmed-over flavour and preserving of uncured meat containing materials. Food Tech 42:133-8.
AOCS. 1997. AOCS Official Method Cd 8-53. Illinois, USA:American Oil Chemists’ Society.
Augustin MA, Berry SK. 1983. Efficacy of the antioxidants BHA and BHT in palm olein during heating and frying. J Am Oil Chem Soc 60:1520-23.
Bastos LCS, Perera PAP. 2010. Influence of heating time and metal ions on the amount of free fatty acids and formation rates of selected carbonyl ompounds during the thermal oxidation of canola oil. J Agric Food chem 58:12777-83.
Bough WA. 1975. Reduction of suspended solids in vegetable canning waste effluents by coagulation with chitosan. J Food Sci 40:297-301.
Bracco U, Dieffenbacher A, Kolarovic L. 1981. Frying performance of alm oil liquid fractions. J Am Oil Chem Soc 58:6-12.
Brack HP, Tirmizi SA, Risen WM. 1997. A spectroscopic and viscometric study of the metal-ion-induced gelation of the biopolymer chitosan. Polymer 38:2351-62.
Chatterjee S, Chatterjee S, Chatterjee BP, Guha AK. 2004.Clarification of fruit juice with chitosan. Process Biochem 39:2229-32.
Chen YC, Chen BH. 2003. Determination of polycyclic aromatic hydrocarbons in fumes from fried chicken legs. J Agric Food Chem 51:4162-7.
Chiandotti RS, Rodrigues PC, Akcelrud L. 2010. Grafting of chitosan with fatty acyl derivatives. J Braz Chem Soc 21:1910-6.
Cho SY, Miyashita K, Miyazawa T, Fujinoto K, Kaneda T. 1987. Autooxidation of ethyl eicosapentaenoate and docosahexaenoate. J Am Oil Chem Soc 64: 876-79.
Choe E, Min DB. 2007. Chemistry of deep-fat frying oils. J Food Sci 72:77-86.
CNS. 2003. CNS 3647 : Methods of test for edible oils and fats-Determination of acid value. Taipei, Taiwan: Bureau of Standard, Metrology & Inspection.
Darmadji P, Izumimoto M. 1996. Effect of chitosan in meat preservation. Indo Food Nutr Pro 3:51-6.
Davi G, Falco A, Patrono C. 2005. Lipid peroxidation in diabetes mellitus. Antioxid Redox Signal 7:256-68.
Dixon MD, Hammond EG. 1984. The flavor intensity of some carbonyl compounds important in oxidized fats. J Am Oil Chem Soc 61:1452-6.
EndoY, Li CM, Tagiri-Endo M, Fujimoto K. 2001. A modified method for the estimation of total carbonyl compounds in heated and frying oils using 2-propanol as a solvent. J Am Oil Chem Soc 78:1021-4.
Fallico B, Arena E, Zappalà M. 2003. Roasting of hazenuts. Role of oil in colour development and hydroxymethylfurfural formation. Food Chem 8:569-73.
Fritsch CW. 1981. Measurement of frying fat deterioration: a brief review. J Am Oil Chem Soc 58:272-4.
Ghaouth AE, Arul J, Ponnampalam R, Boulet M. 1991. Chitosan coating effect on storability and quality of fresh strawberries. J Food Sci 56:1618-20.
Ghaouth AE, Ponnampalam R, Castaigne F, Arul J. 1992. Chitosan coating to extend the storage life of tomatoes. Hort Sci 27:1016-8.
Halliwell B, Murcia MA, Chirico S, Aruoma OI. 1995. Free radicals and antioxidants in food and in vivo: what they do and how they work. Crit Rev Food Sci Nutr 35:7-20.
Hamama AA, Nawar WW. 1991. Thermal decomposition of some phenolic antioxidants. J Agric Food Chem 39:1063-9.
Iwaoka KT, Perkins EG. 1978. Metabolism and lipogenic effect of cyclic monomers of methyllinolenate in the rat. J Am Oil Chem Soc 55:734-43.
Josephson DB, Lindsay RC. 1987. Retro-aldol related degradations of 2,4-decadienal in the development of staling flavors in fried foods. J Food Sci 52:1186-90.
Jummaa M, Furkert FH, Muller BW. 2002. A new lipid emulsion formulateon with high antimircrobial efficacy using chitosan. Eur J Pharm Biopharm 53:115-23.
Kanatt SR, Chander R, Sharma A. 2008. Chitosan glucose complex – a novel food preservative. Food Chem 106: 521-8.
Kanner J, German JB, Kinsella JE. 1987. Initiation of lipid peroxidation in biological systems. Crit Rev Food Sci Nutr 24: 317-63.
Kao JW, Hammond EG, White PJ. 1998. Volatile compounds produced during deodorization of soybean oil and their flavor significance. J Am Oil Chem Soc 75:1103–7.
Katragadda HR, Fullana A, Sidhu S, Carbonell-Barrachina Á. 2010. Emissions of volatile aldehydes from heated cooking oils. Food Chem 120:59-65.
Kim KW, Thomas RL. 2007. Antioxidative activity of chitosans with varying molecular weights. Food Chem 101:308-13.
Kittur FS, Kumar KR, Tharanathan RN. 1998. Functional packaging properties of chitosan films. Z Lebensm Unters Forsch A 206:44-7.
Knorr D. 1982. Functional properties of chitin and chitosan. J Food Sci 47:593-5.
Lee J, Lee Y, Choe E. 2007.Temperature dependence of the autoxidation and antioxidants of soybean, sunflower, and olive oil. Eur Food Res Technol 226:239–46.
Lim P, Wuenschell GE, Holland V, Lee DH, Pfeifer GP, Rodrigues H, Termini J. 2004. Peroxyl radical mediated oxidative DNA base damage: implications for lipid peroxidation induced mutagenesis. Biochem 43: 15339-48.
Marnett LJ. 2002. Oxy radicals, lipid peroxidation and DNA damage. Toxicology 181-182:219-22.
Melton SL, Jafar S, Sykes D, Trigiano MK. 1994. Review of stability measurements for frying oils and fried food flavor. J Am Oil Chem Soc 71:1301-8.
Mezzetti A, Cipollone F, Cuccurullo F. 2000. Oxidative stress and complications in diabetes: isoprostanes as new markers on an old paradigm. Cardiovasc Res 47:475-88.
Min DB, Lee H-O. 1999. Chemistry of lipid oxidation. In: Teranishi R, Wick EL, Hornstein I, editors. Flavor Chemistry-Thirty Years of Progrss. New York: Plenum Press. p175-80.
Monien BH, Frank H, Seidel A, Glatt H. 2009. Conversion of the common food constituent 5-hydroxymethylfurfural into a mutagenic and carcinogenic sulfuric acid ester in the mouse in vivo. Chem Res Toxicol 22:1123-8.
Mordi RC, Walton JC, Burton GW, Hughes L, Ingold KU, Lindsay DA, Moffatt DJ. 1993. Oxidative degradation of β-carotene and β-apo-8′-carotenal. Tetrahedron 49:911–28.
Mun S, Decker EA, Park Y, Weiss J, McClements DJ. 2006. Influence of interfacial composition on in vitro digestibility of emulsified lipids:potential mechanism for chitosan’s ability to inhibit fat digestion. Fobi 1:21-9.
Muzzarelli R. 1977. Enzymic synthesis of chitin and chitosan. In: Muzzarelli RAA. Chitin. New York: Pergamon Press, Oxford. p 5-12.
Muzzarelli RAA, Weckx M, Fillipini O. 1989. Removal of trace metal ions from industrial waters, unclear effluents and drinking water, with the aid of cross-linked N-carboxymethylchitosan. Carbohydr Polym 11:293-306.
Nagrik DM, Gawande MB. 2010. One-pot preparation of β–amino carbonyl compounds by mannich reaction using MgO/ZrO2 as effective and reusable catalyst. Int J Chem 2:98-101.
Nawar WW. 1996. Lipids. In: Fennema. Food chemistry. 3th ed. New York: Marcel Dekker Inc. p226-313.
Naz S, Siddiqi R, Sheikh H, Sayeed SA. 2005. Deterioration of olive, corn and soybean oils due to air, light, heat and deep-frying. Food Res Int 38: 127–34.
Pamplona R, Dalfo E, Ayala V, Bellmunt MJ, Prat J, Ferrer I, Portero-Otin M. 2005. Proteins in human brain cortex are modified by oxidation, glycoxidation, and lipoxidation. J Biol Chem 280: 21522-30.
Paradis AJ, Nawar WW. 1981. Evaluation of new methods for assessment of used frying oils. J Food Sci 46:449-51.
Paul S, Mittal GS. 1997. Regulating the use of degraded oil/fat in deep‐fat/oil food frying. Crit Rev Food Sci Nutr 37:635-62.
Paz I, Molero M. 2000. Catalytic effect of solid metals on thermal stability of olive oils. J Agric Food Chem 77:127-30.
Piotrowski JJ, Hunter GC, Eskelson CD, Dubick MA, Bernhard VM. 1990. Evidence for lipid peroxidation in atherosclerosis. Life Sci 46: 715-21.
Prashanth KVH, Tharanathan RN. 2007. Chitin/chitosan:modifications and their unlimited application potential-an review. Trends Food Sci Technol 18:117-31.
Remero A, Cuesta C, Sánchez-Muniz FJ. 2000. Trans fatty acid production in deep fat frying of frozen foods with different oils and frying modalities. Nutr Res 20:599-608.
Romero A, Bastida S, Sánchez-Muniz FJ. 2006. Cyclic fatty acid monomer formation in domestic frying of frozen foods in sunflower oil and high oleic acid sunflower oil without oil replenishment. Food Chem Toxicol 44:1674–81.
SAS. 2011. SAS Procedures and SAS user's guide. Version 9, Software Release 9.2 for windows. SAS Institute, Inc., Cary. NC. U.S.A.
Sebedio JL, Catte M, Boudier MA, Prevost J, Grandgirard A. 1996. Formation of fatty acid monomers during the finish frying of frozen prefried potatoes. Food Res Int 29:109-16.
Seppanen CM, Csallany AS. 2001. Simultaneous determination of lipophilic aldehydes by high-performance liquid chromatography in vegetable oil. J Am Oil Chem Soc 78:1253-60.
Seppanen CM, Csallany AS. 2002. Formation of 4-hydroxynonenal, a toxic aldehyde, in soybean oil at frying temperature. J Am Oil Chem Soc 79:1033-8.
Shahidi F, Arachchi JKV, Jeon YJ. 1999. Food applications of chitin and chitosans. Trends Food Sci Technol 10:37-51.
Shibamoto T. 2006. Analytical methods for trace levels of reactive carbonyl compounds formed in lipid peroxidation systems. J Pharm Biomed Anal 41:12-25.
Silva TO, Perera PAP. 2008. Influence of time, surface-to-volume ratio,and heating process (continuous or intermittent) on the emission rates of selected carbonyl compounds during thermal oxidation of palm and soybean oils. J Agric Food Chem 56:3129-35.
Singh R, Leuratti C, Josyula S, Sipowicz MA, Diwan BA, Kasprzak K, Schut HAJ, Marnett LL, Anderson LM, Shuker DEG. 2001. Lobe-specific increases in malondialdehyde DNA adduct formation in the livers of mice following infection with Helicobacter hepaticus. Carcinogenesis 22:1281-7.
Skog E.1950. A toxicological investigation of lower aliphatic aldehydes.I. toxicity of formaldehyde, acetaldehyde, propionaldehyde and butyraldehyde; as well as of acrolein and crotonaldehyde. Acta pharmacol 6:299-318.
Spiteller G. 2001. Lipid peroxidation in aging and age-dependent diseases. Exp Gerontol 36:1425-57.
Stevenson SG, Genser MV, Eskin NAM. 1984. Quality control in the use of deep frying oil. J Am Oil Chem Soc 61:1102-8.
Synowiecki J, Al-Khateeb NA. 2003. Production, properties, and some new applications of chitin and its derivatives. Food Sci Nutr 43:145-71.
Takeoka GR, Full GH, Dao LT. 1997. Effect of heating on the characteristics and chemical composiyion of selected frying oils and fats. J Agric Food Chem 45:3244-9.
Tharanathan RN, Kittur FS. 2003. Chitin—The undisputed biomolecule of great potential. Crit Rev Food Sci Nutr 43:61–87.
Tyagi VK, Vasishtha AK. 1996. Changes in the characteristics and composition of oils during deep-fat frying. J Am Oil Chem Soc 73:499-506.
Ullrich F, Grosch W. 1987. Identification of the most intense volatile flavour compounds formed during autoxidation of linoleic acid. Z Lebensm Unters Forsch 184:277-82.
Warner K. 1999. Impact of high-temperature food processing on fats and oils. In: Jackson LS, Knize MG, Morgan JN, editors. Impact of processing on food safety. New York:Plenum Press. p 67-77.
Weistt JL, Karel M. 1992. Development of a fluorescence sensor to monitor lipid oxidation. 1.fluorescence spectra of chitosan powder and polyamide powder after exposure to volatile lipid oxidation products. J Agric Food Chem 40:1158-62.
White PJ, Hammond EG.1983. Quantification of carbonyl compounds in oxidized fats as trichlorophenylhydrazones. J Am Oil Chem Soc 60:1769-73.
Young DH, Kohle H, Kauss H. 1882. Effect of chitosan on membrane permeability of suspension-cultured Glycine max and Phaseolus vulgaris Cells. Plant Physiol 70:1449-54.
Zhang D, Quantick PC. 1997. Effects of chitosan coating on enzymatic browning and decay during postharvest storage of litchi (Litchi chinensis Sonn.) fruit. Postharvest Biol Technol 12:195-202.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top