(44.192.112.123) 您好!臺灣時間:2021/03/01 02:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:朱昱融
研究生(外文):Yu-Jung Chu
論文名稱:線性化腦部深層電流刺激器
論文名稱(外文):A Linearized Current Stimulator for Deep Brain Stimulation
指導教授:沈鼎嵐
指導教授(外文):Ding-Lan Shen
口試委員:高少谷黃執中
口試委員(外文):Shao-Ku KaoChih-Chung Huang
口試日期:2011-01-06
學位類別:碩士
校院名稱:輔仁大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:78
相關次數:
  • 被引用被引用:0
  • 點閱點閱:126
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一個應用於深層腦部刺激術(Deep Brain Stimulation)來治療巴金森氏症的電流刺激器。此刺激器使用低功率切換式電容數位-類比轉換器,應用於電壓控制電流轉導放大器的輸入以調整輸出電流。所提出的失真抵消技術可以改善電流刺激器的線性度。定電流雙相輸出使用橋式開關切換的設計,來調控輸出電流脈波。數位電路產生可程式化的脈波來調控輸出電流之波寬長度與頻率的大小。在負載為10KΩ下,刺激電流振幅為0~165uA,波寬為16~128us,頻率為126~244Hz。電刺激器中的電壓控制電流轉導放大器部份,採用TSMC 0.35-um CMOS的積體電路製程製作,工作電壓為3.3V。
In this thesis, the front end of the stimulator applied in the implantable deep brain stimulation (DBS) for the therapy of Parkinson’s disease is developed. This stimulator adopts the low power switched-capacitor DAC accompanying with voltage-to-current transconductance amplifiers to obtain the adjustable output currents. The proposed distortion cancellation technique improves the linearity of the current stimulator. The biphasic stimulation waveform is generated from the bridge switching technique and the programmable pulse. The digital circuit generates the programmable pulse signals with width and frequency adjustments. This stimulation circuit provides the 0~165uA current for a typical loading of 10 KΩ, 16~128us pulse width, and 126~244 Hz frequencies. The key component, voltage to current transconductance amplifier, of this stimulator is fabricated with a TSMC 0.35-um CMOS technology at 3.3V supply voltage.
第一章 緒論 1
1.1研究動機 1
1.2研究目的 1
1.3文獻回顧 2
1.4論文介紹 3
第二章 類比電路設計與模擬 4
2.1線性化全電晶體轉導放大器 5
2.1.1基本電壓-電流轉導放大器 5
2.1.2 PMOS源極隨耦器之改善線性電路 10
2.2雙相輸出電流設計 15
2.3摺疊疊接運算放大器(Folded-Cascode Operational Amplifier) 17
2.4切換電容式數位類比轉換器 23
2.4.1 Flip-Around切換電容式數位類比轉換器 27
2.4.2電容式切換運算放大數位類比轉換器 28
2.4.3非重疊(Non-overlapped)時脈產生電路 36
2.5類比解多工器(Analog Demultiplexer) 38
2.5.1取樣且保持電路(Sample-and-Hold) 39
2.5.2取樣開關精確度之考慮 40
2.5.3取樣開關誤差之改善 41
2.5.4環型計數器(Ring Counter) 43
2.6類比電路系統架構 47
2.6.1輸入端電路設計 47
2.6.2分時多工電路設計 48
第三章 數位電路設計與模擬 53
3.1調頻數位電路 54
3.2調波寬數位電路 54
3.3產生負脈波NEG數位電路 56
3.4數位訊號輸入介面電路設計 58
第四章 電路佈局與量測結果 61
4.1電路整體佈局 62
4.2電路佈局後模擬(Post-Simulation) 64
4.3晶片量測考量 69
4.4晶片量測結果 70
第五章 結論與未來展望 73
5.1結論 73
5.2未來展望 74
參考文獻 75
附錄一 已發表論文 78


[1] Mark A. Liker, Deborah S. Won, Vikas Y. Rao, and Sherwin E. Hua, “Deep Brain Stimulation An Evolving Technology,” Proc. IEEE, Vol. 96, No. 7, July 2008.
[2] Paulo S. Motta, and Jack W. Judy, “Multielectrode Microprobes for Deep-Brain Stimulation Fabricated With a Customizable 3-D Electroplating Process,” IEEE Trans. Biomed. Eng., Vol. 52, No. 5, May 2005.
[3] Douglas McCreery, Albert Lossinsky, Victor Pikov, and Xindong Liu, “Microelectrode Array for Chronic Deep-Brain Microstimulation and Recording,” IEEE Trans. Biomed. Eng., Vol. 53, No. 4, April 2006.
[4] F. Javier Sanchez Castro, Claudio Pollo, Reto Meuli, Philippe Maeder, Olivier Cuisenaire, Meritxell Bach Cuadra, Jean-Guy Villemure, and Jean-Philippe Thiran, “A Cross Validation Study of Deep Brain Stimulation Targeting: From Experts to Atlas-Based, Segmentation-Based and Automatic Registration Algorithms,” IEEE Trans. Medical Imaging, Vol. 25, No. 11, November 2006.
[5] Gary E. Christensen, Sarang C. Joshi, and Michael I. Miller, “Volumetric Transformation of Brain Anatomy,” IEEE Trans. Medical Imaging, Vol. 16, No. 6, December 1997.
[6] Pierre-François D. Haese, Ebru Cetinkaya, Peter E. Konrad, Chris Kao, and Benoit M. Dawant, “Computer-Aided Placement of Deep Brain Stimulators: From Planning to Intraoperative Guidance,” IEEE Trans. Medical Imaging, Vol. 24, No. 11, November 2005.
[7] Donna Page, and Marjan Jahanshahi, “Deep Brain Stimulation of the Subthalamic
Nucleus Improves Set Shifting But Does Not Affect Dual Task Performance in Parkinson’s Disease,” IEEE Trans. on Neural Systems and Rehabilitation Eng., Vol. 15, No. 2, June 2007.
[8] Mark B. Shapiro, David E. Vaillancourt, Molly M. Sturman, Leo Verhagen Metman, Roy A. E. Bakay, and Daniel M. Corcos, “Effects of STN DBS on Rigidity in Parkinson’s Disease,” IEEE Trans. on Neural Systems and Rehabilitation Eng., Vol. 15, No. 2, June 2007.
[9] Alexis M. Kuncel, Scott E. Cooper, Barbara R. Wolgamuth, and Warren M. Grill, “Amplitude- and Frequency-Dependent Changes in Neuronal Regularity Parallel Changes in Tremor With Thalamic Deep Brain Stimulation,” IEEE Trans. on Neural Systems and Rehabilitation Eng., Vol. 15, No. 2, June 2007.
[10] Maurizio Ferrarin, Ilaria Carpinella, Marco Rabuffetti, Mario Rizzone, Leonardo Lopiano, and Paolo Crenna, “Unilateral and Bilateral Subthalamic Nucleus Stimulation in Parkinson’s Disease: Effects on EMG Signals of Lower Limb Muscles During Walking,” IEEE Trans. on Neural Systems and Rehabilitation Eng., Vol. 15, No. 2, June 2007.
[11] R. L. Testerman, M. T. Rise, and P. H. Stypulkowski, “Electrical Stimulation as Therapy for Neurological Disorders,” IEEE Eng. Med. Biol. Mag., Vol. 25, pp. 74-78, Sept.-Oct. 2006.
[12] M. Sivaprakasam, W. Liu, M. S. Humayun, and J. D. Weiland, “A Variable Range Bi-phasic Current Stimulus Driver Circuitry for An Implantable Retinal Prosthetic Device,” IEEE J. Solid-State Circuits, Vol. 40, pp. 763-771, March 2005.
[13] B. K. Thurgood, D. J. Warren, N. M. Ledbetter, G. A. Clark, and R. R. Harrison, “A Wireless Integrated Circuit for 100-channel Charge-balanced Neural Stimulation,” IEEE Trans. Biomed. Eng., Vol. 3, pp. 405-414, December 2009.
[14] M. Ghovanloo, and K. Najafi, “A Compact Large Voltage-compliance High Output-impedance Programmable Current Source for Implantable Microstimulators,” IEEE Trans. Biomed. Eng., Vol. 52, pp. 97-105, January 2005.
[15] Klaas Bult, and Govert J. G. M. Geelen, “An Inherently Linear and Compact MOST-only Current Division Technique,” IEEE J. Solid-State Circuits, Vol. 27, pp. 12, December 1992.
[16] K. J. Tracey, “A Charge-balanced Current Driver and Electrode Characterizationfor an Implantable Neural Stimulator,” M.Sc. dissertation, Univ. Utah, Salt Lake City, 2007.
[17] M. Ghovanloo, and K. Najafi, “A Small Size Large Voltage Compliance Programmable Current Source for Biomedical Implantable Microstimulators,” Proc. IEEE Engineering in Medicine and Biology Society (EMBS) Conf., pp. 1979-1982, September 2003.
[18] B. Razavi, Design of Analog CMOS Integrated Circuits, McGRAW-Hill, New York, 2001.
[19] B. Fotouhi, “All-mos Voltage-to-current Converter,” IEEE J. Solid-State Circuits, Vol. 36, pp. 147-151, January 2001.
[20] P. R. Gray, Analysis and Design of Analog Integrated Circuits, 5th ed. Addison Wesley, 2010.
[21] A. Scheiner, and J. T. Mortimer, “Imbalance Biphasic Electrical Stimulation,” Proc. IEEE Engineering in Medicine and Biology Society (EMBS) Conf., Vol. 12, No. 4, 1990.
[22] S. Bourret, M. Sawan, and R. Plamondon, “Programmable High-amplitude Stimulus Current-source for Implantable Microstimulators,” Proc. IEEE EMBS Conf., Vol. 5, pp. 1938-1941, November 1997.
[23] M. Ghovanloo, and K. Najafi, “A Modular 32-site Wireless Neural Stimulationmicrosystem,” Proc. IEEE Solid-State Circuits Conf. Dig. Tech. Papers, pp. 226-227, February 2004.
[24] K. Kagawa, K. Isakari, T. Furumiya, A. Uehara, T. tokuda, J. Ohta, and M. Nunoshita, “Pixel Design of Pulsed CMOS Image Sensor for Retinal Prosthesis with Digital Photosensitivity Control,” IET Electron. Lett., Vol. 39, pp. 419-421, March 2003.
[25] D. Johns, and K. Martin, Analog Integrated Circuit Design, John Wiley & Sons, Inc. 1997.
[26] R. J. van de Plassche, Integrated Analog-to-Digital and Digital-to-Analog Converter, Kluwer Academic Publishers, Boston, MA, USA, 1994.
[27] A. Biman, and D. G. Nairn, “Trimming of Current Mode DACs by Adjusting Vt,”
Proc. IEEE International Symposium on Circuits and Systems (ISCAS’96), Atlanta
GA, U.S.A., June 1996.
[28] P .E. de Haan, S. van den Elshout, E. A. M. Klumperink, and K. Bult, “Analysis of a Current Mode MOST-only D-A Converter,” Proc. IEEE Solid-State Circuits Conf.(ESSCIRC’94), Gif-sur-Y vette, pp. 188-91, France, 1994.
[29] N. Tan, “Design and Implementation of a High-Speed Bipolar DAC,” Proc. IEEE International Solid-State Circuits Conf. (ISSCC’97), San Fransico, CA, U.S.A., June 1997.
[30] D. Gilbert, “Understanding D/A Accuracy Specs,” Electronic Products, Vol. 24, No. 3, pp. 61-63, July 1981.
[31] J. Crols, and M. Steyaert, “Switched-opamp: An Approach to Realized Full CMOS Switched Capacitor Circuits at Very Low Power Supply Voltages,” IEEE J. Solid-State Circuits, Vol. 29, pp. 936-942, August 1994.
[32] Mark J. Lehmkuhle, Sandeep S. Bhangoo, and Daryl R. Kipke, “The Electrocorticogram as a Feedback Control Signal for Deep Brain Stimulation of the
Subthalamic Nucleus in the Hemi-Parkinsonian Rat,” Proc. IEEE EMBS Conf., Kohala Coast, Hawaii, USA, May 2007.
[33] Jongwoo Lee, Hyo-Gyuem Rhew, Daryl Kipke, and Michael Flynn, “A 64 Channelprogrammable Closed-loop Deep Brain Stimulator with 8-channel Neural Amplifier and Logarithmic ADC,” Proc. IEEE Symposium on VLSI Circuits Digest of Technical Papers, University of Michigan, 2008.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔