(3.236.231.61) 您好!臺灣時間:2021/05/11 16:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:吳智褘
研究生(外文):Chih-Hui Wu
論文名稱:使用格式雙向預估演算法來實現正交常數模數與正交多重模數演算法
論文名稱(外文):Orthogonalized CMA and Orthogonalized MMA Using the QRD-LSL Interpolation Algorithm
指導教授:袁正泰
指導教授(外文):Jenq-Tay Yuan
口試委員:林昇洲陳巽璋袁正泰
口試委員(外文):Sheng-Chou LinKuan-Chung ChenJenq-Tay Yuan
口試日期:2011-03-09
學位類別:碩士
校院名稱:輔仁大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:58
中文關鍵詞:格式雙向預估演算法正交常數模數演算法正交多重模數演算法
外文關鍵詞:QRD-LSL interpolation algorithmOrthogonalized CMAOrthogonalized MMA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:109
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
常數模數演算法與多重模數演算法有收斂速度慢的缺點,利用牛頓演算法雖然可以加速常數模數演算法多重模數演算法在盲蔽等化的收斂速度,但是也伴隨著大量的運算量,本篇論文主要的工作就是証明正交常數模數演算法與正交多重模數演算法可以取代牛頓常數模數演算法與牛頓多重模數演算法。正交常數模數演算法與正交多重模數演算法不僅可加速收斂速度還可使用格式雙向預估演算法得到較低的運算量。
The Newton algorithm can be applied to the well known constant modulus algorithm (CMA) and the multimodulus algorithm (MMA) to accelerate their convergence speed for blind equalization. This work demonstrates that the Newton-based CMA and the Newton-based MMA can be closely approximated by the orthogonalized CMA (O-CMA) and the orthogonalized MMA (O-MMA), respectively. The O-CMA and O-MMA are shown to exhibit better numerical stability than their Newton-based counterparts. Moreover, the O-CMA and the O-MMA, both of which were conventionally implemented by using the matrix inversion lemma, can be implemented in a more computationally efficient manner by exploiting the QR-decomposition-based least-squares lattice (QRD-LSL) interpolation algorithm.
Abstract (in Chinese).....................................i
Abstract.................................................ii
Acknowledgement.........................................iii
Contents.................................................iv
List of Figures...........................................v
1 Introduction............................................1
1.1. The Baseband Equivalent Model .......................4
1.2. Constant Modulus Algorithm (CMA).....................6
1.3. Multiple Modulus Algorithm (MMA).....................9
1.4. Multiple Modulus Algorithm (p, q)...................10
2 CMA and MMA Based on Pseudo-Newton Algorithms..........12
2.1. Pseudo-Newton-CMA and Pseudo-Newton-MMA.............13
2.2. O-CMA and O-MMA Based on QRD-LSL Interpolation Algorithm................................................15
3 Simulation Results.....................................28
4 Conclusion.............................................52
References...............................................55

List of Figures
Fig. 1.1: T/2-spaced noisy channel model..................6
Fig. 2.1: Divide-and-conquer scheme for the equalizer with tap length ............................................27
Fig. 3.1: A comparison of residual ISI using various
algorithms with 4-QAM and SNR=30dB using Channel 1 with BSE.....................................................36
Fig. 3.2: A comparison of residual ISI using various algorithms with 16-QAM and SNR=30dB using Channel 1 with BSE.....................................................36
Fig. 3.3: A comparison of residual ISI using various algorithms with 32-QAM and SNR=30dB using Channel 1 with BSE.....................................................37
Fig. 3.4: A comparison of residual ISI using various algorithms with 16-QAM and SNR=30dB using Channel 1 with BSE.....................................................37
Fig. 3.5: A comparison of SER using various algorithms
with 16-QAM and SNR=30dBusing Channel 1 with BSE........38
Fig. 3.6: A comparison of residual ISI using various algorithms with 16-QAM and SNR=20dB using Channel 1 with BSE.....................................................38
Fig. 3.7: A comparison of SER using various algorithms
with 16-QAM and SNR=20dB using Channel 1 with BSE.......39
Fig. 3.8: A comparison of residual ISI using various algorithms with 16-QAM and SNR=30dB using Channel 2
with FSE................................................39
Fig. 3.9: A comparison of SER using various algorithms
with 16-QAM and SNR=30dB using Channel 2 with FSE.......40
Fig. 3.10: A comparison of residual ISI using various algorithms with 16-QAM and SNR=20dB using Channel 2
with FSE................................................40
Fig. 3.11: A comparison of SER using various algorithms with 16-QAM and SNR=20dB using Channel 3
with FSE........... ....................................41
Fig. 3.12: A comparison of residual ISI using various algorithms with 32-QAM and SNR=30dB using Channel 1
with BSE................................................41
Fig. 3.13: A comparison of SER using various algorithms with 32-QAM and SNR=30dB using Channel 1
with BSE................................................42
Fig. 3.14: A comparison of residual ISI using various algorithms with 32-QAM and SNR=20dB using Channel 1 with BSE.....................................................42
Fig. 3.15: A comparison of SER using various algorithms with 32-QAM and SNR=20dB using Channel 1
with BSE................................................43
Fig. 3.16: A comparison of residual ISI using various algorithms with 32-QAM and SNR=30dB using Channel 3
with FSE................................................43
Fig. 3.17: A comparison of SER using various algorithms with 32-QAM and SNR=30dB using Channel 3
with FSE................................................44
Fig. 3.18: A comparison of residual ISI using various algorithms with 32-QAM and SNR=20dB using Channel 3
with FSE................................................44
Fig. 3.19: A comparison of SER using various algorithms with 32-QAM and SNR=20dB using Channel 3
with FSE................................................45
Fig. 3.20: A comparison of residual ISI using various algorithms with 16-QAM and SNR=30dB using Channel 3
with BSE................................................45
Fig. 3.21: A comparison of SER using various algorithms with 16-QAM and SNR=30dB using Channel 3 with BSE.......46
Fig. 3.22: A comparison of residual ISI using various algorithms with 16-QAM and SNR=20dB using Channel 3
with BSE................................................46
Fig. 3.23: A comparison of SER using various algorithms with 16-QAM and SNR=20dB using Channel 3
with BSE................................................47
Fig. 3.24: A comparison of residual ISI using various algorithms with 32-QAM and SNR=30dB using Channel 3
with BSE................................................47
Fig. 3.25: A comparison of SER using various algorithms with 32-QAM and SNR=30dB using Channel 3
with BSE................................................48
Fig. 3.26: A comparison of residual ISI using various algorithms with 32-QAM and SNR=20dB using Channel 3
with BSE................................................48
Fig. 3.27: A comparison of SER using various algorithms with 32-QAM and SNR=20dB using Channel 3 with BSE.....................................................49
Fig. 3.28: A comparison of ISI using various algorithms with 16-QAM and SNR=30dB using Channel 2 with BSE.....................................................49
Fig. 3.29: A comparison of SER using various algorithms with 16-QAM and SNR=30dB using Channel 2 with BSE.....................................................50
Fig. 3.30: A comparison of ISI using various algorithms with 32-QAM and SNR=30dB using Channel 2 with BSE.....................................................50
Fig. 3.31: A comparison of ISI using various algorithms with 32-QAM and SNR=30dB using Channel 2 with BSE.....................................................51

[1] D. N. Godard, “Self-recovering equalization and carrier tracking in two-dimensional data communication system,” IEEE Trans. Commun., vol. COM-28, pp. 1867-1875, Nov. 1980.
[2] J. R. Treichler and B. G. Agee, “A new approach to multipath correction of constant modulus signals,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-28, pp. 459-472, Apr. 1983.
[3] C. R. Johnson, Jr., P. Schniter, T. J. Endres, J. D. Behm, D. R. Brown and R. A. Casas, “Blind equalization using the constant modulus criterion: a review,” Proc. IEEE, vol. 86, pp. 1927-1950, Oct. 1998.
[4] J. R. Treichler, M. G. Larimore and J. C. Harp, “Practical blind demodulators for high-order QAM signals,” Proc. IEEE, vol. 86, pp. 1907-1925, Oct. 1998.
[5] K. Wesolowski, “Self-recovering adaptive equalization algorithms for digital radio and voiceband data modems,” Proc. European Conf. Circuit Theory and Design, pp. 19-24, 1987.
[6] K. N. Oh and Y. O. Chin, “Modified constant modulus algorithm: blind equalization and carrier phase recovery algorithm,” Proc. IEEE Int. Conf. Commun., vol. 1, pp. 498-502, 1995.
[7] L. M. Garth, J. Yang and J.-J. Werner, “Blind equalization algorithms for dual-mode CAP-QAM reception,” IEEE Trans. Commun., vol. 49, pp. 455-466, Mar. 2001.
[8] J. Yang, J.-J. Werner and G. A. Dumont, “The multimodulus blind equalization and its generalized algorithms,” IEEE J. Sel. Areas in Commun., vol. 20, pp. 997-1015, June 2002.
[9] V. Sharma and V. Naveen Raj, “Convergence and performance analysis of Godard family and multimodulus algorithms for blind equalization,” IEEE Trans. Signal Process., vol. 53, pp. 1520-1533, Apr. 2005.
[10] J.-T. Yuan and K.-D. Tsai, “Analysis of the multimodulus blind equalization algorithm in QAM communication systems,” IEEE Trans. Commun., vol. 53, pp. 1427-1431, Sep. 2005.
[11] T. J. Endres, S. D. Halford, C. R. Johnson, Jr. and G. B. Giannakis, “Simulated comparisons of blind equalization algorithms for cold start-up applications,” Int. J. Adapt. Control Signal Process., vol. 12, pp. 283-301, 1998.
[12] Y. Chen, T. Le-Ngoc, B. Champagne and C. Xu, “Recursive least squares constant modulus algorithm for blind adaptive array,” IEEE Trans. Signal Process., vol. 52, pp. 1452-1456, May 2004.
[13] R. Gooch, M. Ready, and J. Svoboda, “A lattice-based constant modulus adaptive filter,” Proc. 20th Asilomar Conf. Signals, Syst., Comput., Pacific Grove, CA, pp. 282-286, 1987.
[14] R. D. Gitlin and F. R. Magee Jr., “Self-orthogonalizing adaptive equalization algorithms,” IEEE Trans. Commun., vol. 25, pp. 666-672, July 1977.
[15] R. Gooch and J. Lundell, “The CM array: an adaptive beamformer for constant modulus signal,” Proc. ICASSP, Japan, pp. 2523-2526, 1986.
[16] T. Schirtzinger, X. Li and W. K. Jenkins, “A comparison of three algorithms for blind equalization based on the constant modulus error criterion,” Proc. ICASSP, pp. 1049-1052, 1995.
[17] T. Petillon, A. Gilloire, and S. Theodoridis, “The fast Newton transversal filter: an efficient scheme for acoustic echo cancellation in mobile radio,” IEEE Trans. Signal Process., vol. 42, pp. 509-517, Mar. 1994.
[18] G. Yan and H. H. Fan, “A Newton-like algorithm for complex variables with applications in blind equalization,” IEEE Trans. Signal Process., vol. 48, pp. 553-556, Feb. 2000.
[19] K. Kreutz-Delgado and Y. Isukapalli, “Use of the Newton method for blind adaptive equalization based on the constant modulus algorithm,” IEEE Trans. Signal Process., vol. 56, pp. 3983-3995, Aug. 2008.
[20] X.-L Li and W.-J. Zeng, “Performance analysis and adaptive Newton algorithms of multimodulus blind equalization criterion,” Signal Process., vol. 89, pp. 2263-2273, Nov. 2009.
[21] J.-T. Yuan and T.-C. Lin, “Equalization and carrier phase recovery of CMA and MMA in blind adaptive receivers,” IEEE Trans. Signal Process., vol. 58, pp. 3206-3217, June 2010.
[22] S. Haykin, Adaptive Filter Theory, 4th ed., Prentice-Hall, Englewood Cliffs, NJ, 2002.
[23] J.-T. Yuan, QRD Least-Squares Lattice Algorithms, in QRD-RLS adaptive filtering, edited by J. A. Apolinário Jr., Springer, New York, Feb. 2009.
[24] I. D. Skidmore and I. K. Proudler, “The KaGE RLS algorithm,” IEEE Trans. Signal Process., vol. 51, pp. 3094-3104, Dec. 2003.
[25] J.-T. Yuan, “QR-decomposition-based least-squares lattice interpolators,” IEEE Trans. Signal Process., vol. 48, pp. 70-79, Jan. 2000.
[26] D. F. Marshall and W. K. Jenkins, “A fast quasi-Newton adaptive filtering algorithm,” IEEE Trans. Signal Process., vol. 40, pp. 1652-1662, July 1992.
[27] J. M. Cioffi and T. Kailath, “Fast recursive least squares transversal filters for adaptive filtering,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-32, pp. 304-337, Apr. 1984.
[28] P. S. R. Diniz, M. L. R. de Campos and A. Antoniou, “Analysis of LMS-Newton adaptive filtering algorithms with variable convergence factor,” IEEE Trans. Signal Process., vol. 43, pp. 617-627, Mar. 1995.
[29] G. Picchi and G. Prati, “Blind equalization and carrier recovery using a “Stop-and-Go” decision-directed algorithm,” IEEE Trans. Commun., vol. 35, pp. 877-887, Sep. 1987.
[30] H. Mathis, “Blind phase synchronization for VSB signals,” IEEE Trans. Broadcasting, vol. 47, pp. 340-347, Dec. 2001.
[31] G. V. Moustakides, “Study of the transient phase of the forgetting factor RLS,” IEEE Trans. Signal Process., vol. 45, pp. 2468-2476, Oct. 1997.
[32] Benveniste and M. Goursat, “Blind equalizers,” IEEE Trans. Commun., vol. COM-32, pp. 871-883, Aug. 1984
[33] S. Abrar and A. K. Nandi, “Blind equalization of square-QAM signals: a multimodulus approach,” IEEE Trans. Signal Process., vol. 58, Jan. 2010.
[34] Y. Li and Z. Ding, “Global convergence of fractionally spaced Godard (CMA) adaptive equalizers,” IEEE Trans. Signal Processing, vol. 44, pp. 818-826, Apr. 1996.
[35] H. Mathis, “Blind phase synchronization for VSB signals,” IEEE Trans. Broadcast., vol. 47, pp. 340-347, Dec. 2001.
[36] S. Abrar, “An adaptive method for blind carrier phase recovery in a QAM receiver,” Proc. Int. Conf. Information Emerging Technologies, pp. 1-6, 2007.
[37] A. Goupil and J. Palicot, “New algorithms for blind equalization: the constant norm algorithm family,” IEEE Trans. Signal Process., vol. 55, no. 4, pp. 1436-1444, 2007.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔