跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/25 23:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭淳蔚
研究生(外文):Chun-Wei Cheng
論文名稱:維生素B2缺乏對大白鼠肝腎抗氧化系統之影響
論文名稱(外文):Effects of Riboflavin Deficiency on Hepatic and Renal Antioxidant System of Rats
指導教授:駱菲莉駱菲莉引用關係
指導教授(外文):Feili Lo Yang
學位類別:碩士
校院名稱:輔仁大學
系所名稱:營養科學系
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:130
中文關鍵詞:維生素B2 缺乏肝臟腎臟抗氧化系統高脂飲食氧化壓力
外文關鍵詞:riboflavin deficiencyliverkidneyantioxidant systemhigh fat dietoxidative stress
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究之目的為探討急慢性維生素B2 缺乏對大鼠肝腎抗氧化系統的影響。將 60 隻3 週齡雄性SD 離乳大鼠隨機分配至維生素B2 充足組(自由攝食) (C)、維生素 B2 充足組(配對餵食) (A)、維生素B2 缺乏組(自由攝食) (D)以及維生素B2 缺乏高油組(自由攝食) (H)等四組中,分別飼養4 週、8 週及13 週。實驗期間定期採血分析紅血球榖胱甘肽還原酶活性係數 (EGRAC) 以確認動物之維生素B2 營養狀態。結果顯示,維生素B2 缺乏降低飼料攝取量和動物體重,形成熱量攝取受限制的狀況。維生素B2 缺乏或高脂維生素B2 缺乏飼料會造成生長中大鼠肝臟SOD 或GPX 活性與腎臟GPX 活性之下降。然而此二條件並未改變肝臟GSH 含量,且會增加腎臟還原態GSH 及GSH 總量,因此可能並未造成大鼠肝腎的氧化損傷。然而隨著動物的成長,肝臟抗氧化酵素(CAT、GST)活性及還原態GSH 與GSH 總量升高,以致肝臟氧化損傷下降。腎臟SOD 活性雖隨動物生長而上升,但在GSH 系統及其他抗氧化系統不變的情況下,氧化壓力上升。因此,長期維生素B2 缺乏使生長中的大鼠熱量攝取受到限制,雖然造成部分肝腎抗氧化酵素系統活性之降低,但可能因而誘發GSH之生成量或其他代償機制,彌補單一維生素B2 缺乏可能造成的氧化損傷。
The purposes of this study were to evaluate the effects of acute and chronic riboflavin deficiency on hepatic and renal antioxidant systems of SD rats. Sixty 3-week old male weanling rats were randomly assigned to receive the following dietary treatments: riboflavin adequate (6.1 mg riboflavin/ kg feed) diet (ad lib) (C), riboflavin adequate diet (pair-fed) (A), riboflavin deficient (0.1 mg riboflavin/ kg feed) diet (ad lib)(D), or high fat (20%, wt/wt) riboflavin deficient diet (ad lib) (H) for 4weeks, 8weeks or 13 weeks. Riboflavin status of the animals were confirmed by analyzing their EGRAC every other week during the study. The results indicated that riboflavin deficiency reduced the food intake and the growth of the animals, resulting in a caloric restriction condition. Riboflavin deficiency with or without high dietary fat decreased the SOD or GPX activities in liver, and lowered renal GPX activities. Since GSH and total GSH contents were not altered in liver, but were elevated in kidney, riboflavin deficiency probably did not cause significant oxidative damage in these organs. However, with the growth of the animals, the raise in liver CAT and GST activities as well as reduced and total GSH contents probably left liver out of oxidative stress. The increased in kidney SOD activity without other changes in antioxidant system probably resulted in oxidative stress in kidney. Although the caloric restriction caused by long term riboflavin deficiency may reduced the activities of some antioxidant enzymes, the possible induction on GSH system many compensate the threat of single nutrient deficiency of riboflavin.
【總目錄】
中文摘要 ........................................................................................................................................... I
Abstract ............................................................................................................................................ II
【總目錄】 ...................................................................................................................................... V
【圖目錄】 ..................................................................................................................................... IX
【表目錄】 ....................................................................................................................................... X
縮寫對照表 ..................................................................................................................................... XII
中英文對照表 ................................................................................................................................ XIV
第一章 前言 .......................................................................................................................................1
第二章 文獻回顧 ...............................................................................................................................3
一、維生素B2 簡介 ...........................................................................................................................3
(一)維生素B2 的代謝 ........................................................................................................................3
(二)維生素B2 生化功能與機轉 .........................................................................................................5
(三)維生素B2 的缺乏症與毒性 .........................................................................................................6
二、自由基的簡介 ..............................................................................................................................7
(一)自由基與活性氧物種 ...................................................................................................................7
(二)自由基與活性氧物種之來源 .......................................................................................................8
(三)自由基與氧化傷害 .....................................................................................................................11
三、抗氧化防禦系統 ........................................................................................................................15
(一)酵素性抗氧化防禦系統 .............................................................................................................15
(二)非酵素性抗氧化防禦系統 .........................................................................................................17
四、高脂飲食對於氧化壓力之影響 ................................................................................................23
五、維生素B2 與抗氧化酵素的關係 .............................................................................................24
六.實驗動機 .......................................................................................................................................25
(一)研究問題 ......................................................................................................................................25
(二)研究目的 .....................................................................................................................................25
(三)研究重要性 ..................................................................................................................................25
第三章 材料與方法 ............................................................................................................................27
一、實驗設計 ....................................................................................................................................27
二、動物飼養環境 ............................................................................................................................28
三、飼料製備 ....................................................................................................................................28
(一)飼料成分及配方 .........................................................................................................................28
(二)飼料製備程序 .............................................................................................................................29
四、樣本的收集與處理 ....................................................................................................................30
(一)血液 .............................................................................................................................................30
(二)臟器 .............................................................................................................................................30
五、分析項目與方法 ........................................................................................................................30
(一)維生素B2 營養狀況之測定 .......................................................................................................30
(二)抗氧化物含量之測定 ..................................................................................................................31
(三)抗氧化酵素之測定 ......................................................................................................................31
(四)過氧化物之測定 ..........................................................................................................................32
(五)其他 ...............................................................................................................................................33
六、統計分析 .....................................................................................................................................33
第四章 結果 ........................................................................................................................................34
一、動物維生素B2 營養狀況之測定變化 .......................................................................................34
(一)紅血球穀胱甘肽還原酶活化係數 .............................................................................................34
二、動物生長情形 .............................................................................................................................34
(一)飼料攝食量 .................................................................................................................................34
(二)體重 .............................................................................................................................................35
三、動物肝臟與腎臟抗氧化物含量之變化 ....................................................................................36
(一)肝臟榖胱甘肽含量測定結果 .....................................................................................................36
(二)腎臟榖胱甘肽含量 .....................................................................................................................37
四、動物肝臟與腎臟抗氧化酵素活性 ............................................................................................40
(一)銅鋅超氧物歧化酶 .....................................................................................................................40
(二)穀胱甘肽過氧化酶 .....................................................................................................................41
(三)觸酶活性 ......................................................................................................................................41
(四)穀胱甘肽硫轉移酶活性 .............................................................................................................42
五、動物肝臟與腎臟過氧化物濃度 .................................................................................................43
(一)硫代巴比妥酸反應物質 ..............................................................................................................43
第五章 討論 .......................................................................................................................................63
一、維生素B2 營養狀況 ...................................................................................................................63
二、動物體重和攝食量狀況 .............................................................................................................64
三、抗氧化物質 .................................................................................................................................65
(一)榖胱甘肽含量 ..............................................................................................................................65
四、抗氧化系統酵素 .........................................................................................................................68
(一)銅鋅超氧物歧化酶活性 ..............................................................................................................68
(二)穀胱甘肽過氧化酶活性 ..............................................................................................................70
(三)觸酶活性 ......................................................................................................................................71
(四)穀胱甘肽硫轉移酶活性 ..............................................................................................................72
五、過氧化物指標 .............................................................................................................................72
(一) 硫代巴比妥酸反應物質濃度.......................................................................................................72
第六章 結論 ........................................................................................................................................77
第七章 參考文獻 ................................................................................................................................82
附錄一、紅血球穀光甘肽還原酶活性係數之測定方法 ...............................................................102
附錄二、穀胱甘肽含量之測定方法 ...............................................................................................106
附錄三、銅鋅超氧物歧化酶活性之測定方法 ...............................................................................111
附錄四、穀胱甘肽過氧化酶活性之測定方法 ...............................................................................115
附錄五、觸酶活性之測定方法 .......................................................................................................119
附錄六、穀胱甘肽硫轉移酶活性之測定方法 ...............................................................................121
附錄七、硫代巴比妥酸反應物質濃度之測定方法 .......................................................................124
附錄八、蛋白質之測定方法 ...........................................................................................................128

【圖目錄】
圖一、核黃素及其輔酶的型式的結構 .......................................................................... 4
圖二、脂質過氧化的各種途徑 .................................................................................... 13
圖三、各種形式的抗壞血酸(維生素 C)和其反應產生的自由基 ....................... 19
圖四、活性氧物種形成途徑、脂質過氧化過程以及榖胱甘肽和其他抗氧化物對氧
化壓力的因應之道 ........................................................................................................ 22


【表目錄】
表一、實驗動物分組表 ................................................................................................ 27
表二、維生素B2 充足缺乏與高油之飼料成份表(AIN-93G diet)之成份比例 ......... 29
表三、研究期間飼料維生素B2 含量和油脂含量對大白鼠EGRAC 之影響 ........... 46
表四、研究期間飼料維生素B2 含量和油脂含量對大白鼠攝食量之影響 .............. 47
表五、研究期間飼料維生素B2 含量和油脂含量對大白鼠每日平均熱量攝取之影響
....................................................................................................................................... 48
表六、研究期間飼料維生素B2 含量和油脂含量對大白鼠體重之影響 .................. 49
表七、研究期間飼料維生素B2 含量和油脂含量對大白鼠肝臟GSH 和GSSG 之影
響 ................................................................................................................................... 50
表八、研究期間飼料維生素B2 含量和油脂含量對大白鼠肝臟GSH/GSSG 和GSH
總量之影響 .................................................................................................................... 51
表九、研究期間飼料維生素B2 含量和油脂含量對大白鼠腎臟GSH 和GSSG 之影
響 ................................................................................................................................... 52
表十、研究期間飼料維生素B2 含量和油脂含量對大白鼠腎臟GSH/GSSG 和總GSH
含量之影響 .................................................................................................................... 53
表十一、研究期間飼料維生素B2 含量和油脂含量對大白鼠肝臟Cu-Zn SOD 活性之
影響 ............................................................................................................................... 54
表十二、研究期間飼料維生素B2 含量和油脂含量對大白鼠腎臟Cu-Zn SOD 活性之
影響 ............................................................................................................................... 55
表十三、研究期間飼料維生素B2 含量和油脂含量對大白鼠肝臟GPX 活性之影響
....................................................................................................................................... 56
表十四、研究期間飼料維生素B2 含量和油脂含量對大白鼠腎臟GPX 活性之影響
....................................................................................................................................... 57
表十五、研究期間飼料維生素B2 含量和油脂含量對大白鼠肝臟CAT 活性之影響
....................................................................................................................................... 58
表十六、研究期間飼料維生素B2 含量和油脂含量對大白鼠肝臟GST 活性之影響
....................................................................................................................................... 59
表十七、研究期間飼料維生素B2 含量和油脂含量對大白鼠腎臟之GST 活性之影響
....................................................................................................................................... 60
表十八、研究期間飼料維生素B2 含量和油脂含量對大白鼠肝臟TBARS 濃度之影
響 ................................................................................................................................... 61
表十九、研究期間飼料維生素B2 含量和油脂含量對大白鼠腎臟TBARS 濃度之影
響 ................................................................................................................................... 62
表二十、維生素B2 缺乏組和高脂維生素B2 缺乏組與充足組對照肝臟、腎臟分析項
目之比較結果 ................................................................................................................ 79
表二十一、維生素B2 缺乏組和高脂維生素B2 缺乏組與配對餵食組對照肝臟、腎臟
分析項目之比較結果 .................................................................................................... 80
表二十二、肝臟與腎臟分析項目隨時間變化之比較結果 ........................................ 81
一、中文部分

行政院衛生署。國民營養狀況:1993-1996 國民營養狀況變遷調查結果。台北市:行政院衛生署,1998。

行政院衛生署。國人膳食營養素參考攝取量及其說明(Dietary Reference Intakes ; DRIs)第六版。台北市:行政院衛生署。2003:257-341。

洪昭竹。國家實驗動物繁殖及研究中心飼養管理標準操作程序。國家實驗動物繁殖中心編印。台北市。1993。

廖珮君。我國老年人之維生素B2 營養狀況評定及相關因素分析。輔仁大學食品營養學系碩士論文。2003。

楊惠雯。2004-2008 年度國民營養狀況變遷調查之維生素B1 與B2 生化營養狀況評估。輔仁大學營養科學系碩士論文。2010。

駱菲莉、王瑞蓮、蕭寧馨。台灣國小學童營養健康狀況調查2001-2002 台灣國小學童維生素B1 與B2 之營養狀況。學童營養現況。行政院衛生署:台北市。2006:126-40。

二、英文部分

A Report of the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline and Subcommittee on Upper Reference Levels of Nutrients, Food and Nutrition Board, Institute of Medicine. Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. Washington DC: Department of Health and Human Services National Academy Press. 1998:87-122.

Adelekan DA, Thurnham DI. Glutathione peroxidase (EC 1.11.1.9) and superoxide dismutase (EC 1.15.1.1) activities in riboflavin-deficient rats infected with Plasmodium berghei malaria. Br J Nutr. 1998;79:305-9.

Aebi H. Erythrocyte catalase. Expos Annu Biochim Med. 1969;29:139-66.

Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121-6.

Agte VV, Paknikar KM, Chiplonkar SA. Effect of riboflavin supplementation on zinc and iron absorption and growth performance in mice. Biol Trace Elem Res. 1998;65:109-15.

Ames BN. Endogenous oxidative DNA damage, aging and cancer. Free Rad Res Common. 1990;7:121-8.

Aragno M, Meineri G, Vercellinatto I, Bardini P, Raimondo S, Peiretti PG, Vercelli A, Alloatti G, Tomasinelli CE, et al. Cardiac impairment in rabbits fed a high-fat diet is counteracted by dehydroepiandrosterone supplementation. Life Sci. 2009;85:77-84.

Avissar N, Kerl EA, Baker SS, Cohen HJ. Extracellular glutathione peroxidase mRNA and protein in human cell lines. Arch Biochem Biophys. 1994;309:239-46.

Babior BM. Oxygen-dependent microbial killing by phagocytes (first of two parts). N Engl J Med. 1978;298:659-68.

Babior BM. Oxygen-dependent microbial killing by phagocytes (second of two parts). N Engl J Med. 1978;298:721-5.

Bannai S, Tateishi N. Role of membrane transport in metabolism and function of glutathione in mammals. J Membrane Biol. 1986;89:1-8.

Bao Y, Jemth P, Mannervik B, Williamson G. Reduction of thymine hydroperoxide by phospholipid hydroperoxide glutathione peroxidase and glutathione transferases. FEBS Lett. 1997;410:210-2.

Basu A K, Marnett LJ. Molecular requirements for the mutagenicity of malondialdehyde and related acroleins. Cancer Rex. 1984;44:2848-54.

Bates CJ. Glutathione and related indices in rat lenses, liver and red cells during riboflavin deficiency and its correction. Exp Eye Res. 1991;53:123-30.

Bast A, Haenen GR. Interplay between lipoic acid and glutathione in the protection against microsomal lipid peroxidation. Biochim Biophys Acta. 1988;963:558-61.

Beckman KB, Ames BN. Oxidative decay of DNA. J Biol Chem. 1997;272:19633-6.

Bender DA. Vitamin B complex.In Gall, G.A.E., editor. Nutritional Biochemistry of the vitamins. Cambridge: Cambridge University Press 1992:156-83.

Bielenberg J. Folic acid and vitamin deficiency caused by oral contraceptives. Med Monatsschr Pharm. 1991;14:244-7.

Blot WJ, Li JY, Taylor PR, Guo W, Dawsey S, Wang GQ, Yang CS, Zheng SF, Gail M, et al. Nutrition intervention trials in Linxian, China: supplementation with specific Vitamin/mineral combinations, cancer incidence, and disease-specific mortality in the general population, J. Natl. Cancer Inst., 1993;85:1483-92.

Brady PS, Brady LJ, Parsons MJ, Ullrey DE, Miller ER. Effects of riboflavin deficiency on growth and glutathione peroxidase system enzymes in the baby pig. J Nutr. 1979;109:1615-22.

Brady PS, Hoppel CL. Hepatic peroxisomal and mitochondrial fatty acid oxidation in the riboflavin-deficient rat. Biochem J. 1985;229:717-21.

Braughler JM, Duncan LA, Chase RL. The involvement of iron in lipid peroxidation. J Biol Chem. 1986;261:10282-92.

Brown GC , Borutaite V. Nitric oxide, mitochondria, and cell death. IUBMB Life 2001;52:189-95.

Brown JE, Kelly MF. Inhibition of lipid peroxidation by anthocyanins, anthocyanidins and their phenolic degradation products.Eur. J Lipid Sci Technol. 2007;109:66–71

Burk RF. Glutathione-dependent protection by rat liver microsomal protein against lipid peroxidation. Biochim Biophys Acta. 1983;757:21-8.

Burk RF, Hill KE. Regulation of selenoprotein. Ann Rev Nutr Soc. 1993;53:251-62.

Buttke TM, Sanstorm PA. Oxidative stress as a mediator of apoptosis. Immunol Today.1994;15:7-10.

Burton GW ,Ingold KU. Vitamin E as an in vitro and in vivo antioxidant. Ann NY Acad Sci. 1989;570:7-22.

Cai Z, Finnie JW, Blumbergs PC, Manavis J, Ghabriel MN, Thompson PD. Early paranodal myelin swellings (tomacula) in an avian riboflavin deficiency model of demyelinating neuropathy. Exp Neurol. 2006;198:65-71.

Carr A, Frei B. Does Vitamin C act as a pro-oxidant under physiological conditions? FASEB J. 1999;13:1007-24.

Che W, Zhang Z, Wu M, Wang L. Cytotoxicity induced by gasoline engine exhausts associated with oxidative stress. Wei Sheng Yan Jiu. 2008;37:532-5.

Chen J, Schenker S, Henderson GI. 4-hydroxynonenal detoxification by mitochondrial glutathione S-transferase is compromised by short-term ethanol consumption in rats. Alcohol Clin Exp Res. 2002;26:1252-8.

Cheng KC, Cahill DS, Kasai H, Nishimura S, Loeb LA. 8-Hydroxy guanine, an abundant from of oxidative DNA damage, cause GT and AC substitution. J Biol Chem. 1992;267:166-72.

Chu FF, Doroshow JH, Esworthy RS. Expression, characterization, and tissue distribution of a new cellular selenium-dependent glutathione peroxidase, GSHPx-GI. J Biol Chem. 1993;268:2571-6.

Chou ST, Sell JL, Kondra PA. Interrelationships between riboflavin and dietary energy and protein utilization in growing chicks. Br J Nutr. 1971;26:323-33.

Collins AR, Lyon CJ, Xia X, Liu JZ, Tangirala RK, Yin F, Boyadjian R, Bikineyeva A, Pratico D, et al. Age-accelerated atherosclerosis correlates with failure to upregulate antioxidant genes. Circ Res. 2009;104:42-54.

Combs G. The vitamins. San Diego. Academic Press. 1992:271-87.

Conner EM, Grisham MB. Inflammation, free radicals, and antioxidants. Nutrition. 1996;12:274-7.

Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 2003;17:1195-214.

Curnutte JT, Babior BM. Chronic granulomatous disease. Adv Hum Genet. 1987;16:229-97.

Cutler RG. Human longevity and aging: possible role of reactive oxygen species. Ann N Y Acad Sci.1991;621: 1–28.

Cuzzorcrea S, Thiemermann C ,Salvemini D. Potential therapeutic effect of antioxidant therapy in shock and inflammation. Curr Med Chem. 2004;11:1147-62.

Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A. Biomarkers of oxidative damage in human disease.Clin Chem. 2006;52:601-23.

Dargel R. Lipid peroxidation—a common pathogenetic mechanism? Exp Toxicol Pathol. 1992;44:169-81.

Davies KJA. Protein damage and degradation by oxygen radicals. I. general aspects. J Biol Chem. 1987;262:9895-901.

Davies KJA, Delsignore ME. Protein damage and degradation by oxygen radicals. Ⅲ. Modification of secondary and tertiary structure. J Biol Chem. 1987;262:9908-13.

Davies KJA, Delsignore ME, Lin SW. Protein damage and degradation by oxygen radicals.Ⅱ. Modification of amino-acids. J Biol Chem. 1987;262: 9902-7.

Davies KJA, Lin SW, Pacifici RE Protein damage and degradation by oxygen radicals. Ⅳ. Degradation of denatured protein. J Biol Chem. 1987;262:9914-20.

Davies MJ, Slater TF. Studies on the metal-ion and lipoxygenase catalysed breakdown of hydroperoxides using electron-spin-resonance spectroscopy. Biochem J. 1987; 245: 167–73.

Diesen DL, Kuo PC. Nitric oxide and redox regulation in the liver: Part I. General considerations and redox biology in hepatitis. J Surg Res. 2010;162:95-109.

Di Mascio P, Wefers H, Do-Thi HP, Lafleur MVM, Sies H. Singlet olecular oxygen causes loss of biological activity in plasmid and bacteriophage DNA and induces singlestrand breaks. Biochim BiophysActa. 1989;1007:151-7.

Dizdaroglu M, Jaruga P, Birincioglu M and Rodriguez H. Free radical-induced damage to DNA: mechanisms and measurement. Free Rad Biol Med. 2002;32:1102-15.

del Rio LA, Sandalio LM, Palma JM, Bueno P, Corpas FJ. Metabolism of oxygen radicals in peroxisomes and cellular implications. Free Radical Biology and Medicine 1992;13:557–80.

de Pascual-Teresa S, Moreno DA, Garcia-Viguera C. Flavanols and anthocyanins in cardiovascular health: a review of current evidence. Int J Mol Sci. 2010;11:1679-703.

Donovan DH, Menzel DB. Mechanisms of lipid peroxidation: iron catalyzed decomposition of fatty acid hydroperoxides as the basis of hydrocarbon evolution in vivo. Experientia. 1978;34:775-6.

Duerden JM, Bates CJ. Effect of riboflavin deficiency on reproductive performance and on biochemical indices of riboflavin status in the rat. Br J Nutr. 1985;53:97-105.

Dutta P, Gee M, Rivlin RS, Pinto J. Riboflavin deficiency and glutathione metabolism in rats:possible mechanisms underlying altered responses to hemolytic stimuli. J Nutr. 1988;118:1149-57.

Dutta P. Disturbances in glutathione metabolism and resistance to malaria: current understanding and new concepts. J Soc Pharm Chem. 1993;2:11.

Dutta P, Seirafi J, Halpin D, Pinto J, Rivlin R. Acute ethanol exposure alters hepatic glutathione metabolism in riboflavin deficiency. Alcohol. 1995;12:43-7.

Deming DM, Teixeira SR, Erdman JW. Isomerization of B-carotene in tissues from gerbils occurs following a dose of the all-trans and 9-cis isomer. FASEB J. 2001;15:296.

Erguder IB, Karagenc N, Karaca L. Reduced antioxidant potential & sensitivity to oxidation in plasma low density lipoprotein fraction in type 2 diabetes mellitus patients. Indian J Med Res. 2006;124:207-10.

Fass S, Rivlin RS. Regulation of riboflavin-metabolizing enzymes in riboflavin deficiency. Am J Physiol. 1969;217:988-91.

Fernandez-Muino MA, Sancho-Ortiz MT, Valls-Garcia F. Chapter 8: Water-Soluble Vitamins. In: Jeffrey Hurst W, editor. CRC Press. 2008. p. 417-20.

Flohe L, Gunzler WA, Schock HH. Glutathione peroxidase: a selenoenzyme. FEBS Lett. 1973;32:132-4.

Fridovich I. Oxygen: boon and bane. Am Sci. 1975;63:54-9.

Fridovich I. The biology of oxygen radicals. Science. 1978;201:875-80.

Cai Z, Finnie JW, Blumbergs PC, Manavis J, Ghabriel MN, Thompson PD. Early paranodal myelin swellings (tomacula) in an avian riboflavin deficiency model of demyelinating neuropathy.Exp Neurol. 2006;198:65-71.

Garry PJ, Owen GM. An automated flavin adenine dinucleotide-dependent glutathione reductase assay for assessing riboflavin nutriture. Am J Clin Nutr. 1976;29:663-74.

Geret F, Serafim A, Barreira L, Bebianno MJ. Response of antioxidant systems to copper in the gills of the clam Ruditapes decussatus. Mar Environ Res. 2002;54:413-7.

Gibson DD, Hawrylko J, McCay PB. GSH-dependent inhibition of lipid peroxidation: properties of a potent cytosolic system which protects cell membranes. Lipids.1985;20:704-11.

Gilbert DL. Oxygen and Living Processes: An Interdisciplinary. Approach. NewYork.Springer Verlag. 1981.

Glatzle D, Korner WF, Christeller S, Wiss O. Method for the detection of a biochemical riboflavin deficiency. Stimulation of NADPH2-dependent glutathione reductase from human erythrocytes by FAD in vitro. Investigations on the vitamin B2 status in healthly people and geriatric patients. Int Z Vitaminforsch. 1970;40:166-83.

Gong X, Shang F, Obin M, Palmer H, Scrofano MM, Jahngen-Hodge J, Smith DE, Taylor A. Antioxidant enzyme activities in lens, liver and kidney of calorie restricted Emory mice. Mech Ageing Dev. 1997;99:181-92.

Gopal PV, Sriram AV, Sharma D and Singh R. Glutathione-S-transferase in the ageing rat brain cerebrum and the effect of chlorpromazine. Gerontology. 2000;46:7-11.

Gorelik S, Kanner J. Oxymyoglobin oxidation and membrane lipid peroxidation initiated by iron redox cycle: prevention of oxidation by enzymic and nonenzymic antioxidants. J Agric Food Chem. 2001;49:5945-50.

Groff JL, Gropper SS. Chapter 9: The Water-soluble vitamins. Advanced nutrition and human metabolism, 3rd ed. Wadsworth, USA. 1999:269-74.

Gupta M, Dobashi K, Greene EL, Orak JK, Singh I. Studies on hepatic injury and antioxidant enzyme activities in rat subcellular organelles following in vivo ischemia and reperfusion. Mol Cell Biochem. 1997;176:337-47.

Iantomasi T, Favilli F, Marraccini P, Stio M, Treves C, Quattrone A, Capaccioli S, Vincenzini MT, Quatrone A. Age and GSH metabolism in rat cerebral cortex, as related to oxidative and energy parameters.Mech Ageing Dev. 1993;70:65-82.

Knekt P, Heliovaara M, Rissanen A, Aromaa A, Seppanen R, Teppo L, Pukkala E. Leanness and lung-cancer risk. Int J Cancer. 1991;49:208-13.

Krinsky NI. Actions of carotenoids in biological systems. Annu Rev Nutr 1993; 13:561-87.

Halliwell B. The biological effects of the superoxide radical and its products. Bull Eur Physiopathol Respir. 1981;17:21-9.

Halliwell B. Production of superoxide, hydrogen peroxide and hydroxyl radicals by phagocytic cells: a cause of chronic inflammatory disease? Cell Biol Int Rep. 1982;6:529-42.

Halliwell B. Free radicals and vascular disease: how much do we know? BMJ. 1993;307:885-6.

Halliwell B, Gutteridge JM. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J. 1984;219:1-14.

Halliwell B, Gutteridge JMC. Chart 8 Free radicals, aging and disease. In“ Free Radicals in Biology and Medicine“.Oxford. Clarendon Press 1989:484-7.

Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine, 3rd ed. Oxford University Press. 1999.

Hara H, Adachi T, Hirano K. Superoxide dismutase. In: Whitaker JR, Voragen AGJ, Wong DWS, editors. Handbook of Food Enzymology. CRC Press. 2002.

Hill MH, Bradley A, Mushtaq S, Williams EA, Powers HJ. Effects of methodological variation on assessment of riboflavin status using the erythrocyte glutathione reductase activation coefficient assay. Br J Nutr. 2009;102:273-8.

Hirano H, Hamajima S, Horiuchi S, Niitsu Y, Ono S. Effects of B2-deficiency on lipoperoxide and its scavenging system in the rat lens. Int J Vitam Nutr Res. 1983;53:377-82.

Hochgraf E, Mokady S, Cogan U. Dietary oxidized linoleic acid modifies lipid composition of rat liver microsomes and increases their fluidity. J Nutr. 1997;127:681-6.

Hsu CL, Wu CH, Huang SL, Yen GC. Phenolic compounds rutin and o-coumaric acid ameliorate obesity induced by high-fat diet in rats. J Agric Food Chem. 2009:57: 425-31.

Hustad S, McKinley MC, McNulty H, Schneede J, Strain JJ, Scott JM, Ueland PM. Riboflavin, flavin mononucleotide, and flavin adenine dinucleotide in human plasma and erythrocytes at baseline and after low-dose riboflavin supplementation. Clin Chem. 2002;48:1571-7.

Ikehata H, Kawai K, Komura J, Sakatsume K, Wang L, Imai M, Higashi S, Nikaido O, Yamamoto K, et al. UVA1 genotoxicity is mediated not by oxidative damage but by cyclobutane pyrimidine dimers in normal mouse skin. J Invest Dermatol. 2008;128: 2289-96.

Inoue M, Sato EF, Nishikawa M, Park AM, Kira Y, Imada I, Utsumi K. Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr Med Chem. 2003;10:2495-505.

Imlay JA, Fridovich I. Assay of metabolic superoxide production in Escherichia coli. J Biol chem. 1991;266:6957-65.

Jaimes EA, Tian RX, Raij L. Nicotine: the link between cigarette smoking and the progression of renal injury? Am J Physiol Heart Circ Physiol. 2007;292:76-82.

Jensson H, Eriksson LC, Mannervik B. Selective expression of glutathione transferase isoenzymes in chemically induced preneoplastic rat hepatocyte nodules. FEBS Lett. 1985;187:115-20.

Jones DP, Carlson JL, Mody VC, Cai JY, Lynn MJ, Sternberg P. Redox state of glutathione in human plasma. Free Radic Biol Med. 2000;28:625-35.

Kagan VE, Shvedova A, Serbinova E, Khan S, Swanson C, Powell R, Packer L. Dihydrolipoic acid: A universal antioxidant both in the membrane and in the aqueous phase, Biochem. Pharmacol. 1992;44:1637-49.

Kasparova S, Brezova V, Valko M, Horecky J, Mlynarik V, Liptaj T, Vancova O,Ulicna O, Dobrota D. Study of the oxidative stress in a rat model of chronic brain hypoperfusion. Neurochem Int. 2005;46:601-11.

Kikugawa K, Yasuhara Y, Ando K, Koyama K, Hiramoto K, Suzuki M. Effect of supplementation of n-3 polyunsaturated fatty acids on oxidative stress-induced DNA damage of rat hepatocytes. Biol Pharm Bull. 2003;26:1239-44.

Klatt P, Lamas S. Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress Eu. J Biochem. 2000;267:4928-44

Knekt P, Jarvinen R, Seppanen R, Rissanen A, Aromaa A, Heinonen OP, Albanes D, Heinonen M, Pukkala E and Teppo L. Dietary antioxidants and the risk of lung-cancer. Am J Epidemiol. 1991;134:471–9.

Kojo S. Vitamin C: basic metabolism and its function as an index of oxidative stress.Curr Med Chem. 2004;11:1041-64.

Kuo DC, Hsu SP, Chien CT. Partially hydrolyzed guar gum supplement reduces high-fat diet increased blood lipids and oxidative stress and ameliorates FeCl3-induced acute arterial injury in hamsters. J Biomed Sci. 2009;16:15.

Landis GN, Tower J. Superoxide dismutase evolution and life span regulation. Mech. Ageing Dev. 2005;126:365-79.

Lee SS, McCormick DB. Effect of riboflavin status on hepatic activities of flavin-metabolizing enzymes in rats. J Nutr. 1983;113:2274-9.

Lee SS, Ye JH, Jones DP, McCormick DB.Correlation of H2O2 production and liver catalase during riboflavin deficiency and repletion in mammals. Biochem Biophys Res Commun. 1983;117:788-93.

Lei XG. In vivo antioxidant role of glutathione peroxidase: evidence from knockout mice. Methods Enzymol. 2002;347:213-25.

Leonard SS, Harris GK, Shi X. Metal-induced oxidative stress and signal transduction. Free Radic Biol Med. 2004;37:1921-42.

Levander OA, DeLoach DP, Morris VS, Moser PB. Platelet glutathione peroxidase activity as an index of selenium status in rats. J Nutr. 1983;113:55-93

Levin G, Cogan U, Levy Y, Mokady S. Riboflavin deficiency and the function and fluidity of rat erythrocyte membranes. J Nutr. 1990;120:857-61.

Liang H, Liu Q, Xu J. The effect of riboflavin on lipid peroxidation in rats. Journal of hygiene research. 1999;28:370-1.

Long J, Wang X, Gao H, Liu Z, Liu C, Miao M, Liu J. Malonaldehyde acts as a mitochondrial toxin: Inhibitory effects on respiratory function and enzyme activities in isolated rat liver mitochondria. Life Sci. 2006;79:1466-72.

Lorenz FW. Effects of estrogens on domestic fowl and applications in the poultry industry. Vitamins and Hormones. 1954;12:235.Lukaski HC. Chapter 21: Lipoic acid. Wolinsky I, Driskell JA, editors. CRC Press. 2004. p. 412-24.

Mahapatra SK, Das S, Bhattacharjee S, Gautam N, Majumdar S, Roy S.In vitro nicotine-induced oxidative stress in mice peritoneal macrophages: a dose-dependent approach.Toxicol Mech Methods. 2009;19:100-8.

Mannering GJ, Elvehjem CA. Food Utilization and Appetite in Riboflavin Deficiency: Three Figures. J Nutr. 1944;28:157-63.

Marnett LJ. Lipid peroxidation-DNA damage by malondialdehyde. Mut Res-Fund Mol Mech. Mutagen. 1999;424:83-95.

Marnett LJ. Oxyradicals and DNA damage. Carcinogenesis.2000;21:361-70.

Masella R, Di Benedetto R, Vari R, Filesi C, Giovannini C. Novel mechanisms of natural antioxidant compounds in biological systems: Involvement of glutathione and glutathione related enzymes. J Nutr Biochem. 2005;16:577-86.

Mates JM, Perez-Gomez C, De Castro IN. Antioxidant enzymes and human diseases. Clin Biochem. 1999;32:595-603.

Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47:469-74.

McCormick DB. Riboflavin. In: Shils ME, Olson JA, Shike M, editors. Modern Nutrition in Health and Disease, 8th edition. Philadelphia: Lea and Febiger. 1994. p. 366-75.

Meng JY, Zhang CY, Zhu F, Wang XP, Lei CL. Ultraviolet light-induced oxidative stress: effects on antioxidant response of Helicoverpa armigera adults. 2009;55: 588-92.

Meier B, Radeke HH, Selle S, Raspe HH, Sies H, Resch K, Habermehl GG. Human fibroblasts release reactive oxygen species in response to treatment with synovial fluids from patients suffering from arthritis. Free Radic Res Commun. 1990;8:149-60.

Meister A. Glutathione-ascorbic acid antioxidant system in animals. J Biol Chem. 1994;269:9397-400.

Miller LL. Changes in rat liver enzyme activity with inanition. Fed Proc. 1947;6:279.

Mimic-Oka J, Simic DV, Simic TP. Free radicals in cardiovasclar diseases. Medicine and Biology. 1999;6:11-22.

Minotti G, Aust SD. The role of iron in the initiation of lipid peroxidation. Chem Phys Lipids. 1987;44:191-208.

Minotti G, Aust S. The requirements for iron (III) in the initiation of lipid peroxidation by iron (II) and hydrogen peroxide. J Biol Chem. 1987;262:1098-104.

Moini H, Packer L, Saris NEL. Antioxidant and pro-oxidant activities of a-lipoic acid and dihydrolipoic acid. Toxicol Appl Pharmacol. 2002;182:84–90.

Mookerjea S, Hawkins WW. Some anabolic aspects of protein metabolism in riboflavin deficiency in the rat. Br J Nutr. 1960;14:231-8.

Moreno I, Pichardo S, Jos A, Gomez-Amores L, Mate A, Vazquez CM, Camean AM. Antioxidant enzyme activity and lipid peroxidation in liver and kidney of rats exposed to microcystin-LR administered intraperitoneally. Toxicon. 2005;45:395-402.

Morkunaite S, Teplova VV, Saris NE. Mechanism of dihydrolipoate stimulation of the mitochondrial permeability transition: effect of different respiratory substrates. IUBMB Life. 2000;49:211-6.

Mote PL, Grizzle JM, Walford RL, Spindler SR. Influence of age and caloric restriction on expression of hepatic genes for xenobiotic and oxygen metabolizing enzymes in the mouse. J Gerontol. 1991;46:95-100.

Nielsen SE, Young JF, Daneshvar B, Lauridsen ST, Knuthsen P, Sandstrom B, Dragsted LO. Effect of parsley (Petroselinum crispum) intake on urinary apigenin excretion, blood antioxidant enzymes and biomarkers for oxidative stress in human subjects. Br J Nutr. 1999;81:447-55.

Nyska A, Kohen R. Oxidation of biological systems: oxidative stress phenomena,antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol. 2002;30:620-50.

Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbitric acid reaction. Anal Biochem. 1979;95:351-8.

Olpin SE, Bates CJ. Lipid metabolism in riboflavin-deficient rats. 1. Effect of dietary lipids on riboflavin status and fatty acid profiles. Br J Nutr. 1982a;47:577-96.

Olpin SE, Bates CJ. Lipid metabolism in riboflavin-deficient rats. 2. Mitochondrial fatty acid oxidation and the microsomal desaturation pathway. Br J Nutr. 1982b;47:589-96.

Okai Y, Sato EF, Higashi-Okai K, Inoue M. Enhancing effect of the endocrine disruptor para-nonylphenol on the generation of reactive oxygen species in human blood neutrophils. Environ Health Perspect. 2004;112:553-6.

Packer L, Suzuki YJ. Vitamin-E and alpha-lipoate: role in antioxidant recycling and activation of the NF-kappa-b transcription factor. Mol Aspects Med. 1993;14:229-39.

Parsons MJ, Ku PK, Ullrey DE, Stowe HD, Whetter PA, Miller ER. Effects of riboflavin supplementation and selenium source on selenium metabolism in the young pig. J Anim Sci. 1985;60:451-61.

Parthasarathy S, Wieland E, Steinberg D. A role for endothelial cell lipoxygenase in the oxidative modification of low density lipoprotein. Proc Natl Acad Sci U S A. 1989;86:1046-50.

Pelissier MA, Bourdet N, Marques-Dossou F, Desjeux JF, Albrecht R. Palm versus soybean oil on intestinal recovery from malnutrition in Guinea pigs. Pediatr Res. 2002;52:119-24.

Pinchuk I, Schnitzer E, Lichtenberg D. Kinetic analysis of copper-induced peroxidation of LDL. Biochim. Biophys. Acta-Lipids Lipid Metab. 1998;1389: 155-72.

Powers HJ. Riboflavin-iron interactions with particular emphasis on the gastrointestinal tract. Proc Nutr Soc. 1995;54:509-17.

Powers HJ. Riboflavin (vitamin B-2) and health. Am J Clin Nutr. 2003;77:1352-60.

Powers HJ, Bates CJ, Duerden JM. Effects of riboflavin deficiency in rats on some aspects of iron metabolism. nt J Vitam Nutr Res. 1983;53:371-6.

Powers HJ, Weaver LT, Austin S, Wright AJ, Fairweather-Tait SJ. Riboflavin deficiency in the rat: effects on iron utilization and loss. Br J Nutr. 1991;65:487-96.

Prohaska JR. Changes in tissue growth, concentrations of copper, iron, cytochrome oxidase and superoxide dismutase subsequent to dietary or genetic copper deficiency in mice. J Nutr. 1983;113:2048-58.

Pryor WA. Oxidative stress status-the second set. Free Radic Biol Med. 2000;28:503-4.

Reed LJ. Multienzyme systems. Acc Chem Res. 1974;7:40-6.

Rice-Evans C. Flavonoid antioxidants. Curr Med Chem. 2001;8:797-807.

Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Rad Biol Med. 1996;20: 933-56.

Ridnour LA, Thomas DD, Mancardi D, Espey MG, Miranda KM, Paolocci N, Feelisch M, Fukuto J, Wink DA. The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting perspective on stressful biological situations. Biol. Chem. 2004;385:1–10.

Rivlin RS. Riboflavin metabolism. N Engl J Med. 1970;283:463-72.

Rivlin RS, Dutta P. Vitamin B2 (Riboflavin): relevance to malaria and antioxidant acitivity. Nutr Today. 1995;30:62-7.

Rivlin RS. Chapter 7 Riboflavin( Vitamin B2). Zemplemi J, Rucker RB, McCormick DB, Suttie JW. Handbook of vitamins, 4th ed. U.S.A. CRC Press. 2007;233-51.

Robbiano L, Carrozzino R, Puglia CP, Corbu C, Brambilla G. Correlation between induction of DNA fragmentation and micronuclei formation in kidney cells from rats and humans and tissue-specific carcinogenic activity. Toxicol Appl Pharmacol. 1999;161:153-9.

Ross NS, Hansen TP. Riboflavin deficiency is associated with selective preservation of critical flavoenzyme-dependent metabolic pathways. Biofactors. 1992;3:185-90.

Salim AS. Role of free radicals in gastrointestinal cancer. Singapore Med J. 1996;37: 295-8.

Sattler W, Mohr D, Stocker R. Rapid isolation of lipoproteins and assessment of their peroxidation by high-performance liquid chromatography postcolumn chemiluminescence. Methods Enzymol. 1994;233:469-89.

Scherz B, Kuchinskas EJ, Wyss SR, Aebi H. Heterogeneity of erythrocyte catalase. Dissociation, reconiibiniation and hybridization of human erythrocyte catalases. Eur J Biochein.1976;69:603-13.

Schroeter H, Boyd C, Spencer JPE, Williams RJ, Cadenas E, Rice-Evans C. MAPK signaling in neurodegeneration: influences of flavonoids and of nitric oxide. Neurobiol Aging. 2002;23:861-80.

Shen D, Dalton TP, Nebert DW, Shertzer HG. Glutathione redox state regulates mitochondrial reactive oxygen production. J Biol Chem. 2005;280:25305-12.

Shi MM, Iwamoto T, Forman HJ.gamma-Glutamylcysteine synthetase and GSH increase in quinone-induced oxidative stress in BPAEC. Am J Physiol. 1994;26:414-21.

Siddique YH, Afzal M. Protective effect of apigenin against hydrogen peroxide induced genotoxic damage on cultured human peripheral blood lymphocytes. J Appl

Biomed. 2009;7:35-43 Sies H, Stahl W. Vitamins E and C, B-carotene and other carotenoids as antioxidants. Am J Clin Nutr. 1995;62:1315-21.

Simic MG, Bergtold DS, Karam LR. Generation of oxy radicals in biosytems. Mutant Res. 1989;214:3-12.

Skaper SD, Fabrios M, Ferravi V, Dalle CM, Leon A. Quercetin protects cutaneous tissue-associated cell type including sensory neurons from oxidative stress induced by glutathione depletion: cooperative effects of ascorbic acid. Free radical boil Med. 1997;22:669-78.

Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ,et al. Measurement of protein using bicinchoninic acid. Anal Biochem 1985;150:76-85.

Smith AR, Shenvi SV, Widlansky M, Suh JH, Hagen TM. Lipoic acid as a potential therapy for chronic diseases associated with oxidative stress. Curr Med Chem. 2004;11:1135-46.

Sohet FM, Neyrinck AM, Pachikian BD, de Backer FC, Bindels LB, Niklowitz P, Menke T, Cani PD, Delzenne NM. Coenzyme Q10 supplementation lowers hepatic oxidative stress and inflammation associated with diet-induced obesity in mice. Biochem Pharmacol. 2009;78:1391-400.

Song K, Hornak V, de los Santos C, Grollman AP, Simmerling C. Computational analysis of the mode of binding of 8-oxoguanine to formamidopyrimidine-DNA glycosylase. Biochemistry 2006;45:10886-94.

Song JH, Miyazawa T. Enhanced level of n-3 fatty acid in membrane phospholipids induces lipid peroxidation in rats fed dietary docosahexaenoic acid oil. Atherosclerosis. 2001;155:9-18.

Stadtman ER. Protein oxidation and aging. Science.1992;257:1220-4.

Stadtman ER. Role of oxidant species in aging. Curr Med Chem. 2004;11: 1105-12.

Sanchez W, Palluel O, Meunier L, Coquery M, Porcher JM, Ait-Aissa S. Copper-induced oxidative stress in three-spined stickleback: relationship with hepatic metal levels. Env Toxicol Pharmacol. 2005; 19:177-83.

Stadtman ER. Metal ion-catalyzed oxidation of proteins: biochemical-mechanism and biological consequences. Free Rad Biol Med. 1990;9:315-25.

Stralin P, Karlsson K, Johansson BO, Marklund SL. The interstitium of the human arterial wall contains very large amounts of extracellular superoxide dismutase. Arterioscler Thromb Vasc Biol. 1995;15:2032-6.

Stoscheck CM. Quantitation of protein. Methods Enzymol. 1990;182:50-68.

Sugioka G, Porta EA, Corey PN, Hartroft WS. The liver of rats fed riboflavin-deficient diets at two levels of protein. Am J Pathol. 1969;54:1-19.

Sugiura M, Adachi T, Inoue H, Ito Y, Hirano K. Purification and properties of two superoxide dismutases from human placenta. J Pharm Dyn. 1981;4:235-44.

Sure B, Dichek M, Citron MM. Riboflavin as a Factor in Economy of Food Utilization. J Nutr. 1941;21:453-60.

Symons AM, King LJ. Inflammation, reactive oxygen species and cytochrome P450. Inflammopharmacology. 2003;11:75-86

Takahashi K, Akasaka M, Yamamoto Y, Kobayashi C, Mizoguchi J, Koyama J. Primary structure of human plasma glutathione peroxidase deduced from cDNA sequences. J Biochem. 1990;108:145-8.

Takahashi K, Avissar N, Whitin J, Cohen H. Purification and characterization of a novel monomeric glutathione peroxidase: a selenoglycoprotein distinct from the known cellular enzyme. Arch biochem biophys. 1987;256:677-86.

Takebe G, Yarimizu J, Saito Y, Hayashi T, Nakamura H, Yodoi J, Nagasawa S, Takahashi K. A comparative study on the hydroperoxide and thiol specificity of the glutathione peroxidase family and selenoprotein P. J Biol Chem. 2002;277:41254-8.

Tampio M, Markkanen P, Puttonen KA, Hagelberg E, Heikkinen H, Huhtinen K, Loikkanen J, Hirvonen MR, Vahakangas KH. Induction of PUMA-alpha and down-regulation of PUMA-beta expression is associated with benzo(a)pyrene-induced apoptosis in MCF-7 cells. Toxicol Lett. 2009;188:214-22.

Thurnham DI, Migasena P, Pavapootanon N. The ultramicro red-cell glutathione reductase assay for riboflavin status: its use in field studies in Thailand. Mikrochim Acta. 1970;5:988-93.

Tibell L, Aasa R, Marklund SL. Spectral and physical properties of human extracellular superoxide dismutase: a comparison with CuZn superoxide dismutase. Arch Biochem Biophys. 1993;304:429-33.

Tillotson JA, Sauberlich HE. Effect of riboflavin depletion and repletion on the erythrocyte glutathione reductase in the rat. J Nutr. 1971;101:1459-66.

Tsuboi S. Elevation of glutathione level in rat hepatocytes by hepatocyte growth factor via induction of gamma-glutamylcysteine synthetase. J Biochem. 1999;126:815-20.

Traber MG, Rader D, Acuff RV, Ramakrishnan R, Brewer HB, Kayden HJ. Vitamin E dose-response studies in humans with use of deuterated RRR-alpha-tocopherol. Am J Clin Nutr. 1998;68:847-53.

Tumkiratiwong P, Tungtrongchitr R, Migasena P, Pongpaew P, Rojekittikhun W, Vudhivai N, Tungtrongchitr A, Phonrat B, Nuamtanong S. Antioxidant enzyme levels in the erythrocytes of riboflavin-deficient and Trichinella spiralis-infected rats. Southeast Asian J Trop Med Public Health. 2003;34:480-5.

Turpeinen AM, Basu S, Mutanen M. A high linoleic acid diet increases oxidative stress in vivo and affects nitric oxide metabolism in humans. Lipids. 1999;34:291-2.

Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44-84.

Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160:1-40.

Vandeputte C, Guizon I, Genestie-Denis I, Vannier B, Lorenzon G. A microtiter plate assay for total glutathione and glutathione disulfide contents in cultured/isolated cells: performance study of a new miniaturized protocol. Cell Biol Toxicol. 1994;10:415-21.

Videla LA, Fernandez V, Valenzuela A. Age-dependent changes in rat liver lipid peroxidation and glutathione content induced by acute ethanol ingestion. Cell Biochem Funct. 1987;5:273-80.

Voris L, Black A, Swift RW, French CE. Thiamine, riboflavin, pyridoxine and pantothenate deficiencies as affecting the appetite and growth of the albino rat. J Nutr. 1942;23:555-66.

Wohaieb SA, Godin DV. Starvation-related alterations in free radical tissue defense mechanisms in rats. Diabetes,1987;36:169-73.

Wong YT, Ruan R, Tay FE. Relationship between levels of oxidative DNA damage, lipid peroxidation and mitochondria membrane potential in young and old F344 rats. Free Radic Res. 2006;40:393-402.

Yates CA, Evans GS, Powers HJ. Riboflavin deficiency: early effects on post-weaning development of the duodenum in rats. Br J Nutr. 2001;86:593-9.

Yang CH, Lin CY , Yang JH, Liou SY, Li PC, Chien CT. Supplementary Catechins Attenuate Cooking-Oil-Fumes-Induced Oxidative Stress in Rat Lung. Chinese Journal of Physiology 2009;52:151-9.

Yates A, Schlicker S, Suitor C. Dietary reference intakes: The new basis for recommedations for calcium and related nutritions, B vitamins and choline. 1998;98:699-706.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊