(3.236.231.61) 您好!臺灣時間:2021/05/11 15:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:文藍葳
研究生(外文):Lan-wei Wen
論文名稱:金氧半場效電晶體之新型終端結構設計與模擬
論文名稱(外文):New Termination Design and Simulation of MOSFETs
指導教授:林智玲林智玲引用關係
指導教授(外文):Jyh-ling Lin
口試委員:鄭晃忠林明璋
口試委員(外文):Huang-chung ChengMing-jang Lin
口試日期:2011-07-14
學位類別:碩士
校院名稱:華梵大學
系所名稱:電子工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:79
中文關鍵詞:終端結構場板浮動環SIPOS
外文關鍵詞:terminationfield plateguard ringSIPOS
相關次數:
  • 被引用被引用:2
  • 點閱點閱:346
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,許多的技術都在研究如何降低終端結構的面積並提高崩潰電壓,然而,傳統的終端結構在維持高耐壓的情況下,需消耗大量的面積,例如,單一的場板、浮動環或接面邊界延伸結構等等。
SIPOS (Semi-Insulating Polycrystalline Silicon) 結構是利用一層高電阻層,沉積在兩端的電極之間,使兩端電極間的電位呈線性分佈取代原來的非線性分佈,緩和場板邊緣下方的電場,因此大幅提高崩潰電壓。然而,由於此高電阻層的存在,對於整個結構而言,提供了一條電流路徑,使漏電流提高。
此論文中,我們提出一個新型的終端結構,主要構想是利用SIPOS結構結合接面延伸結構,降低終端元件結構面積,並提高崩潰電壓。
最後,相較於傳統的終端結構,我們提出的新型終端結構,崩潰電壓提升了38V,而終端結構的長度減少了40μm,約降低了22.2%的終端結構面積。

Recently, termination to reduce the termination area and improve the breakdown voltage has been studied by many researches. The structures include field plate, guard ring and junction termination extension. However, for high voltage devices, these techniques have the drawback of consuming large area
One technique, utilizing SIPOS (Semi-Insulating Polycrystalline Silicon) as a high-resistivity layer deposited between the electrodes, reduces the peak electric field of the field plate and promotes the potential between the electrodes to be linear. However, the existing of SIPOS between electrodes leads large leakage current because it supplies a current path.
In this thesis, we propose a novel termination structure to reduce the termination area and improve the breakdown voltage including the junction termination extension and semi-resistive layer (SIPOS).
Finally we propose a novel termination area is about 22% lower than that of the conventional termination and improve the breakdown voltage about 38V.

目  錄
誌  謝 I
摘  要 II
Abstract III
目  錄 IV
表  錄 VII
圖  錄 VIII
第一章 緒論 1
1-1研究動機與目標 1
1-2論文流程 2
第二章 Power MOSFET 操作原理與發展回顧 3
2-1 簡介 3
2-2 Power MOSFET操作原理 3
2-2.1 元件操作原理 3
2-2.2 元件的特徵導通電阻(Specific On-Resistance)4
2-2.3 元件崩潰原理(Breakdown Voltage)7
2-3 Power MOSFET 發展回顧 10
2-3.1 基本結構 11
2-3.2 垂直式Power MOSFET 12
2-3.3 橫向式Power MOSFET 13
2-4 終端結構介紹 15
2-3.1 終端結構簡介 15
2-3.2 金屬場板結構 19
2-3.3 浮動環結構 20
2-3.4 接面延伸結構 20
2-3.5 降低表面電場結構 20
2-3.6 終端結構總結 21
第三章 垂直式雙擴散金氧半場效電晶體模擬與量測 24
3-1 簡介 24
3-2 VDMOS 元件結構 24
3-3 VDMOS 元件分析與模擬 25
3-3.1 VDMOS 磊晶層濃度分析 25
3-3.2 VDMOS J-FET濃度分析 26
3-3.3 VDMOS P-Well 濃度分析 27
3-4 終端元件結構 28
3-5 終端元件分析與模擬 28
3-5.1 J-FET濃度分析 28
3-5.2 P-Well 濃度分析 29
3-6元件封裝量測分析 29
3-7元件製作流程 32
第四章 金氧半場效電晶體之新型終端結構模擬 34
4-1簡介 34
4-2元件結構 34
4-3 元件設計與最佳化 35
4-3.1新型終端結構P-濃度調變模擬 35
4-3.2新型終端結構P-Well到P-距離優化調變模擬 36
4-3.3新型終端結構P-長度優化調變模擬 36
4-3.4新型終端結構P-Well長度優化調變模擬 37
4-4 新型終端結構特性比較 37
第五章 結論與未來展望 39
5-1 結論 39
5-2 未來展望 40
參考文獻 77


[1]S.L. Kosier, A. Wei, M.A. Shibib, J.C. Desko, R.D. Schrimpf, K.F. Galloway, and K.C. Yau, “Combination field plate/field ring termination structures for integrated power devices,” in Proceedings of 1993 International Symposium on Power Semiconductor Devices and ICs, 18-20 May 1993 pp. 182 - 187.

[2]B.S. Avset, and L. Evensen, “The effect of metal field plates on multi-guard structures with floating p+ guard rings,” Nucl. Instr. Meth. A 377 (1996) pp. 397-403.

[3]C.B. Goud and K.N. Bhat, “Two-dimensional analysis and design considerations of high-voltage planar junctions equipped with field plate and guard ring,” Electron Devices, IEEE Transactions on Vol. 38, Issue 6, June 1991, pp. 1497 - 1504.

[4]D. Dragomirescu, G. Charitat, F. Rossel, and E. Scheid, “Very high voltage planar devices using field plate and semi-resistive layers: design and fabrication,” in Proceedings of 2000 Semiconductor Conference, Vol. 1, 10-14 Oct. 2000, pp. 363 – 366.

[5]G. Charitat, M.A. Bouanane, and P. Rossel, “A new junction termination technique for power devices: RESURF LDMOS with SIPOS layers,” in Proceedings of 1993 International Symposium on Power Semiconductor Devices and ICs, 19-21 May, 1992, pp. 213 – 216.

[6]D. Jaume, G. Charitat, J.M. Reynes, and P. Rossel, “High-voltage planar devices using field plate and semi-resistive layers,” Electron Devices, IEEE Transactions on Vol. 38, Issue 7, July 1991, pp. 1681 – 1684.

[7]S.-K. Chung, “Analytic model for field-plate-edge breakdown of planar devices terminated with field plate and semi-resistive layer,” Science, Measurement and Technology, IEE Proceedings- Vol. 151, Issue 1, 5 Jan, 2004, pp. 21 – 24.

[8]J. Ni and E. Arnold, “Electrical conductivity of semi-insulating polycrystalline silicon and its dependence upon oxygen content,” Applied Physics Letters, Vol. 39, No. 7, October 1981, pp. 554-556.

[9]12th European Conference in Power Electronics and Applications Tutorial.

[10]B.Jayant Baliga, “Power Semiconductor Devices”. Boston, MA: PWS, 1996.

[11]I.Y. Park, et al, “Numerical analysis on the LDMOS with a double
Epi-layer and trench electrodes,” Microelectronics Journal volume 32, May-June 2001, pp. 497-502.

[12]Haipeng Zhang, Lifei Jiang, Lingling Sun, Wenjun Li, et al, “A Novel SOI LDMOS with A Trench Gate and Field Plate and Trench Drain FOR RF Application ,”IEEE,2007, pp. 1258-1262.

[13]P. H. Wilson “A Novel Trench Gate LDMOS,” IEEE, 2003, pp. 748-755.

[14]Yung C. Liang, Shuming Xu, Changhong Ren and Pang-Dow Foo, ”New Partial SOI LDMOS Device with High Power-Added Efficiency for 2GHz RF Power Amplifier Application,” IEEE, 2000, pp. 325-330.

[15]Changhong Ren, Jun Cai, Yung C. Liang, Pick Hong Ong, N. Balasubramanian, and Johnny K. O. Sin, “The Partial Silicon-on-Insulator Technology for RF Power LDMOSFET Devices and On-Chip Microinductors” IEEE Trans. Electron Devices, Vol. 49, No. 12, December 2002, pp. 615-619.

[16]J. A. Appeals, and H. M. J. Vaes, “High-voltage thin layer devices (RESURF devices),” IEDM Tech. Dig., pp. 238-239, 1979.

[17]A. W. Ludikhuize, “A Review of RESURF Technology,” Proc. Intl. Symp.Power Semiconductor Devices & Integrated Circuits, pp. 11-18, 2000.

[18]G. Charitat, “Voltage handling capability and termination techniques of silicon power semiconductor devices,” bipolar/BiCMOS Circuits and Technology Meeting, Proceedings of the 2001, pp.175-183.

[19]D.S. Chao, C.C. Hung, D.Y. Shu, M.-J. Kao, and W.Y. Hsieh ; M.-J. Tsai ; Benson Wang; Bill Teng; H.P. Tsai ; Rick Lin; Max Chen, ” Optimization and fabrication of planar edge termination techniques for a high breakdown voltage and low leakage current p-i-n diode,” Applied Power Electronics Conference and Exposition, 2004. APEC '04. Nineteenth Annual IEEE, Vol.1, pp. 241 – 245, 2004.

[20]Z. Hossain, T. Ishigwo, L. Tu, H. Corleto, F. Kuramae, and R. Nair,” Field-plate effects on the breakdown voltage of an integrated high-voltage LDMOS transistor, ” Power Semiconductor Devices and ICs, 2004. Proceedings. ISPSD '04. The 16th International Symposium on 24-27 May 2004, pp. 237 – 240.

[21]A. Nezar and C.A.T. Salama ,”Breakdown voltage in LDMOS transistors using internal field rings,” Electron Devices, IEEE Transactions on Vol. 38, Issue 7, July 1991, pp. 1676 – 1680.

[22]M. Vellvehi, D. Flores, and Joreda .X et. al. “Design and optimization of suitable edge terminations for 6.5kV IGBTs,” Microelectronics Journal, Vol. 33, Issue 9, September 2002, pp. 765-769.

[23]A.W. Ludikhuize, “A Review of RESURF Technology,” in Proceedings of 2000 International Symposium on Power Semiconductor Devices and ICs, pp. 11-18, May 2000.

[24]J.A. Appels and H.M.J Vaes, “High Voltage Thin Layer Devices (RESURF Devices),” Proceedings of 25th International electron Device Meeting, IEEE - IEDM 1979, Vol.25, pp. 238-241.

[25]Z. Parpla and C.A.T. Salama, “Optimization of RESURF LDMOS transistors: an analytical approach,” IEEE Transactions on Electron Devices, Vol. 37, Issue 3, pp. 789 -796, March 1990.

[26]A. Aarts and N. D’Halleweyn, “A surface-potential-based high-voltage compact LDMOS transistor Model,” Electron Devices, IEEE Transactions on, Vo1. 52, Issue 5, May 2005, pp. 999-1007.

[27]D. Dragomirescu, G.. Charitat, and F. Morancho, ”Novel concepts for high voltage junction termination techniques using very deep trenches,” in Proceedings of 1999 Semiconductor Conference, Vol.1, 5-9 Oct. 1999 pp. 67 - 70 .

[28]D. Dragomirescu and G. Charitat, “Trench termination technique with vertical JTE for 6 kV devices,” in Preceedings of 2000 Bipolar/BiCMOS Circuits and Technology Meeting, 24-26 Sept. 2000 pp. 86 – 89.

[29]L. Theolier et al. “A new junction termination technique: the Deep Trench Termination (DT2),”Proc. of ISPSD’2009, pp. 176-179, 2009.

[30]J.K. Oh, M.W. Ha, M.K. H, and Y.I. Choi, ”A new junction termination method employing shallow trenches filled with oxide,” Electron Device Letters, IEEE Vol. 25, Issue 1, Jan. 2004, pp. 16 – 18.

[31]D. Krizaj, S. Amon, and G. Charitat, “Diffused spiral junction termination structure: modeling and realization,” in Proceedings of 1996 International Symposium on Power Semiconductor Devices and ICs, 20-23 May 1996, pp. 247 – 250.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔