跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/16 19:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王本勇
研究生(外文):Pen-Yung Wang
論文名稱:壓電風扇之熱流特性分析
論文名稱(外文):Analysis of Thermal-Fluid Characteristics of Piezoelectric Fan
指導教授:李弘毅李弘毅引用關係
指導教授(外文):Hung-Yi Li
口試委員:湯同達蔡國隆
口試委員(外文):Tongdar TangGo-Long Tsai
口試日期:2011-04-15
學位類別:碩士
校院名稱:華梵大學
系所名稱:機電工程學系博碩專班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:75
中文關鍵詞:壓電風扇電子冷卻計算流體力學
外文關鍵詞:Piezoelectric FanElectronic CoolingComputational Fluid Dynamics
相關次數:
  • 被引用被引用:1
  • 點閱點閱:449
  • 評分評分:
  • 下載下載:69
  • 收藏至我的研究室書目清單書目收藏:0
壓電風扇具有重量輕、體積小、低耗能、低噪音與使用壽命長等優點,非常適合使用於小型電子設備冷卻。
本論文利用計算流體力學軟體Fluent以數值模擬方式探討壓電風扇之熱流特性。研究中改變壓電風扇擺放方式、擺放位置與擺放高度等參數,探討壓電風扇對於流場及散熱之影響。研究結果顯示壓電風扇能有效驅動流體進行散熱,對於局部散熱有明顯的效果。當壓電風扇平行於熱源時,散熱效果最佳的擺放位置為壓電風扇尖端切齊熱源中央。當壓電風扇垂直於熱源時,散熱效果優於當壓電風扇平行於熱源,而散熱效果隨著壓電風扇與熱源間距縮短而增加。

A piezoelectric fan is an attractive device for cooling microelectronic systems due to its light weight, small volume, low power consumption, minimal noise emission, and excellent durability.
The thermal-fluid characteristics of the piezoelectric fan are numerically investigated by the computational fluid dynamics software FLUENT. The effects of the configuration, the position and the height of the piezoelectric fan on the fluid flow and the heat transfer are studied. The results show that the piezoelectric fan can effectively impel the fluid to transfer heat and the local cooling is obvious. If the piezoelectric fan is parallel to the heater, the optimal position of the piezoelectric fan for cooling occurs where the tip of the piezoelectric fan locates at the center of the heater. The heat transfer performance is better if the piezoelectric fan is perpendicular to the heater than if the piezoelectric fan is parallel to the heater. Moreover, the heat transfer performance enhances as the distance between the piezoelectric fan and the heater decreases.

目錄
致謝 I
摘要 II
ABSTRACT III
目錄 IV
圖錄 VII
ㄧ、序論 1
1.1 研究動機 1
1.2 文獻回顧 1
1.3 研究內容 6
二、理論模式 7
2.1 統御方程式 7
2.1.1 質量守恆方程式 7
2.1.2 動量守恆方程式 8
2.1.3 能量守恆方程式 8
2.2 動態網格 9
2.2.1 動態網格守恆方程式 9
2.2.2 動態網格更新方法 10
2.3 邊界條件 13
2.3.1 壁面邊界 13
2.3.2 加熱面 13
2.3.3 壓電風扇移動之方程式 14
2.4 離散化 14
三、幾何模型建立與數值分析 21
3.1 前處理 21
3.1.1 加熱片 21
3.1.2 網格產生 21
3.2 數值計算 22
3.3 後處理 23
3.4 數值驗證 23
四、結果與討論 28
4.1 熱源平均溫度分佈 28
4.2 壓電風扇平行於熱源時之速度、壓力與溫度分佈 29
4.3 壓電風扇平行於熱源時,擺放位置對於熱源平均溫度之影響 31
4.4 壓電風扇垂直於熱源時,速度、壓力與溫度分佈 32
4.5 壓電風扇垂直於熱源時,擺放高度對於熱源平均溫度之影響 34
五、結論與未來展望 72
5.1 結論 72
5.2 未來展望 72
參考文獻 74


參考文獻
1.Acikalin, T., Garimella, S. V., Raman, A., and Petroski, J., “Characterization and Optimization of the Thermal Performance of miniature Piezoelectric Fans,” International Journal of Heat and Fluid Flow, Vol. 28, No. 4, pp. 806-820, 2007.
2.Liu, S. F., Huang, R. T., Sheu, W. J., and Wang, C. C., “Heat Transfer by a Piezoelectric Fan on a Flat Surface Subject to the Influence of Horizontal/Vertical Arrangement,” International Journal of Heat and Mass Transfer, Vol. 52, No. 11-12, pp. 2565-2570, 2009.
3.Yoo, J. H., Hong, J. I., and Cao, W., “Piezoelectric Ceramic Bimorph Coupled to Thin Metal Plate as Cooling Fan for Electronic Devices,” Sensors and Actuators A: Physical, Vol. 79, No. 1, pp. 8-12, 2000.
4.Abdullah, M. K., Abdullah, M. Z., Ramana, M. V., Khor, C. Y., Ahmad, K. A., Mujeebu, M. A., Ooi, Y., and Ripin, Z. M., “Numerical and Experimental Investigations on Effect of Fan Height on the Performance of Piezoelectric Fan in Microelectronic Cooling,” International Communications in Heat and Mass Transfer, Vol. 36, pp. 51-58, 2009.
5.Kimber, M., Garimella, S. V., and Raman, A., “Local Heat Transfer Coefficients Induced by Piezoelectrically Actuated Vibrating Cantilevers,” Journal of Heat Transfer, Vol. 129, No. 9, pp. 1168-1176, 2007.
6.Acikalin, T., Wait, S. M., Garimella, S. V., and Raman, A., “Experimental Investigation of the Thermal Performance of Piezoelectric Fans,” Heat Transfer Engineering, Vol. 25, No .1, pp. 4-14, 2004.
7.Wait, S. M., Basak, S., Garimella, S. V., and Raman, A., “Piezoelectric Fans Using Higher Flexural Modes for Electronics Cooling Applications,” IEEE Transactions on Components and Packaging Technologies, Vol. 30, No. 1, pp. 119-128, 2007.
8.Tseng, K. H., Mochizuki, M., Mashiko, K., Nguyen, T., Kiyoka, F., and Kosakabe, T., “Piezo Fan for Thermal Management of Electronics” Proceedings of the 2nd International Forum on Heat Transfer, Tokyo, Japan, 2008.09.17-2008.09.19.
9.Kimber, M., Suzuki, K., Kitunai, N., Seki, K., and Garimella, S. V., “Pressure and Flow Rate Performance of Piezoelectric Fans” IEEE Transactions on Components and Packaging Technologies, Vol. 32, No. 4, pp. 766-755, 2009.
10.Acikalin, T., and Garimella, S. V., “Analysis and Prediction of the Thermal Performance of Piezoelectrically Actuated Fans” Heat Transfer Engineering, Vol. 30, No. 6, pp. 487-498, 2009.
11.Fluent 6.1 User’s Guide, Fluent Inc., New Hampshire, USA, 2003.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top