(3.235.139.152) 您好!臺灣時間:2021/05/08 18:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:游家和
研究生(外文):You, Jiahe
論文名稱:一維氧化鋅奈米結構中摻雜效應對結構、光學及磁學特性的影響
論文名稱(外文):Doping effect on the structural, optical and magnetic properties of one dimensional ZnO nanostructures
指導教授:楊尚霖楊尚霖引用關係
指導教授(外文):Young, Sanlin
口試委員:楊尚霖陳清祺林德裕
口試委員(外文):Young, SanlinCheng, ChinchiLin, Deryuh
口試日期:2011-06-24
學位類別:碩士
校院名稱:修平技術學院
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:58
中文關鍵詞:溶膠凝膠法氧化鋅奈米線化學水熱沉積法螢光光譜磁滯曲線磁矩
外文關鍵詞:sol-gel methodzinc oxidenanowireshydrothermally chemical growth methodphotoluminescence spectroscopyhysteresis loopmagnetization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:396
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是利用溶膠凝膠法製備氧化鋅晶種層於Si基板上,並使用化學水熱成長法在氧化鋅晶種層上浸泡成長出摻雜釤氧化鋅與摻雜鋁氧化奈米線。探討溶液中不同摻雜濃度(1mM, 2mM, 4mM)及不同奈米線浸泡成長時間(1 h, 1.5 h, 2 h)對奈米線之晶體結構、表面微結構、光學及磁學特性之影響。
製備的奈米線經由X-ray繞射結果分析其晶格結構及晶粒大小,結果顯示製備的摻雜釤氧化鋅與摻雜鋁氧化鋅奈米線結構皆為纖鋅礦結構,且結晶方向皆有很高的c軸取向,另外也沒有觀察到二次相的產生。
本論文藉由掃描式電子顯微鏡觀察薄膜表面形態,結果顯示摻雜釤元素會抑制氧化鋅奈米線的成長,奈米線長度由長變短、緻密度由濃密變稀疏。相對的摻雜鋁元素會促進奈米線快速的生長,奈米線長度由短變長、緻密度由稀疏變濃密。
所有樣本經由螢光光譜量測,摻雜釤氧化鋅與摻雜鋁氧化鋅奈米線在紫外光區皆可以觀察到一個明顯的放射峰,且有摻雜的樣本會在綠光(約520 nm)及黃光區(約600 nm)各觀察到一個明顯的放射峰。隨著摻雜濃度的增加,綠光及橘光放射峰有明顯的增強;且紫外光區放射峰也隨著摻雜濃度的增加而減弱。相關的結果顯示因摻雜元素的存在會輕微扭曲晶格結構而減弱紫外光放射強度,同時因而造成的氧空缺及鋅間隙使得綠光及黃光的放射增強。
最後對摻雜釤氧化鋅與摻雜鋁氧化鋅奈米線經磁滯曲線磁性量測,發現所有樣本皆具有室溫下的磁性,且磁矩隨著摻雜的比例增加而增加。室溫磁性的存在是因為受到氧空缺及鋅間隙束縛的載子,在外加磁場磁化束縛載子時由其間耦合磁矩所形成。因此隨著摻雜量增加,氧空缺及鋅間隙增加時,導致磁矩因而隨著增加。

The purpose of the thesis is to fabricate the ZnO seed layer on Si substrate by sol-gel method and to grow samarium-doped zinc oxide and aluminum-doped zinc oxide nanowires on the seeded Si substrate by hydrothermally chemical growth method. In this study, the effect of doping concentration (1mM, 2mM and 4mM) and growth time (1 h and 1.5 h) on the crystallization, microstructure, optical and magnetic properties will be discussed.
The crystal structure of the samarium-doped zinc oxide and aluminum-doped zinc oxide ZnO nanowires was examined by XRD spectra. The results show that all of the nanowires exhibited the same wurtzite hexagonal structure and no structural was disturbance caused by the substitution of samarium or aluminum for zinc in the nanowires. Besides, no traces of Sm oxides and Al oxides related secondary phases were detected by the XRD analysis.
Morphological characterization was observed by a field emission scanning electron microscopy (FE-SEM JEOL JSM-6700F). The results showed that the growth rate of samarium-doped zinc oxide nanowires is restrained and the length of nanowires is decreased by the doping of samarium. In contrary, the growth rate of aluminum-doped zinc oxide nanowires is enhanced and the length of nanowires is increased by the doping of aluminum.
The PL spectra of the nanowires were measured with excitation of the 325 nm He-Cd laser. For all samples, a strong UV emission and a weak broad green-yellow emission were observed. With the increase of samarium and aluminum doping concentration, the intensity of UV emission decreases. This result shows that the impurity may limit the radiative efficiency of the nanowires, which can also result in the quenching of UV emission. In addition, the green-yellow emission enhanced slightly with the increase of samarium and aluminum doping concentration which indicates the increase of oxygen vacancies and zinc interstitial in the nanowires.
The hysteresis loop and magnetization processes were recorded by AGM at room temperature. Ferromagnetic behavior was observed for all compositions. Single crystal ZnO material was thought to be nonmagnetic material. However, during hydrothermal fabrication process, defects such as oxygen vacancies and Zn interstitials can be easily introduced. Band electron, which is locally trapped by oxygen vacancy or Zn interstitial, occupies an orbital overlapping with the d-shells of Zn neighbors. The sp-d exchange interactions between the band electrons and the localized d electrons of Zn couple the individual moments and lead to ferromagnetism of the nanowires. Hence, the enhancement of ferromagnetism of the nanowires is observed due to the doping of samarium and aluminum and correspondingiy increase with defects induced by the increase of doping concentration.

摘要 i
Abstract ii
目錄 v
圖目錄 vii
第一章 緒論 1
第二章 文獻回顧 3
2-1 氧化鋅簡介 3
2-1.1 氧化鋅光學特性 4
2-2.2 氧化鋅磁學特性 7
2-2 氧化鋅的發展回顧 8
2-2.1 氧化鋅的單晶塊材 9
2-2.2 氧化鋅薄膜 11
2-2.3 氧化鋅的一維奈米結構 12
2-3一維奈米結構氧化鋅的製備技術 12
2-3.1 氣相沉積法 13
2-3.2 液相沉積法 . 14
2-4 氧化鋅的應用 16
第三章 研究方法 18
3-1 實驗藥品介紹 18
3-2 基板的清洗 19
3-3 溶液的製備 20
3-4 晶種層薄膜的製備 21
3-5 奈米線的製備 22
3-6 檢測儀器介紹 23
3-6.1 X光繞射儀(X-Ray Diffraction , XRD) 23
3-6.2 場發射掃瞄式電子顯微鏡(Field Emission Scanning Electron Microscopy , FESEM) 24
3-6.3 螢光光譜分析儀 (Photoluminescence Spectrometer , PL) 25
3-6.4 陰極發光光譜分析儀(Cathodoluminescence , CL) 26
3-6.5 拉曼光譜測試儀 (Raman Spectrumer) 27
3-6.6 交替梯度磁性量測儀 (Alternative Gradient Magnetometer , AGM) 28
第四章 結果與討論 29
4-1 摻雜釤氧化鋅奈米線 29
4-1. 1 X光繞射儀結構分析 29
4-1. 2 表面結構分析 31
4-1. 3 室溫螢光光譜分析 35
4-1. 4 磁性量測分析 38
4.2 摻雜鋁氧化鋅奈米線 40
4-2. 1 X光繞射儀結構分析 40
4-2. 2 表面結構分析 42
4-2. 3 室溫螢光光譜分析 50
4-2. 4 磁性量測分析 53
第五章 結論 55
參考文獻 56


[1] Song, J.; Lim, S. J. Phys. Chem. C 111 (2007) 596-600.
[2] K. Soumitra, D. Apurba, C. Subhadra, J. Phys. Chem. B 110 (2006) 17848–17853.
[3] Liu, B.; Zeng, H. C. J. Am Chem. Soc. 125 (2003) 4430-4431.
[4] Zhang, H.; Yang, D.; Li, D.; Ma, X.; Li, S.; Que, D. Crystal Growth & Design 5 (2005) 547-550.
[5] Y. S. Fu, X. W. Du, J. Sun, Y. F. Song, J. J. Liu, Phys. Chem. B 2007, A-E.
[6] Pal, U.; Santiago, P. J. Phys. Chem. B 109 (2005) 15317-15321.
[7] Zhou, X.; Zhang, D.; Zhu, Y.; Shen, Y.; Guo, X.; Ding, W.; Chen, Yi. J. Phys. Chem. B 110 (2006) 25734-25739.
[8] Kuo, C. L.; Kuo, T. J.; Huang, M. H. J. Phys. Chem. B 109 (2005) 20115-20121.
[9] Vayssieres, L. Adv. Mater. 15 (2003) 464-466.
[10] Zhang, W.; Yanagisawa, K. Chemistry Letters. 34 (2005) 1170-1171.
[11] Andeen, D.; Kim, J. H.; Frederick, F. L.; Gregory, K. L.; Sudhiranjan, T. Adv. Funct. Mater. , 16 (2006) 799-804.
[12] Jiang, C.; Zhang, W.; Zou, G.; Yu, W.; Qian, Y. J. Phys. Chem. B 109 (2005) 1361-1363.
[13] Koh, Y. W.; Lin, Ming.; Tan, C. K.; Foo, Y.L.; Loh, K. P. J. Phys. Chem. B 108 (2004) 11419-11425.
[14] Y. Hong, D. Li, J. Zheng, G. Zou, Langmuir 22 (2006) 7331-7334.
[15] Viswanathan, G.; Murugesan, S.; Pushparaj, V.; Nalamasu, O.; Ajayan, P. M.; Linhardt, R. J.
Miomacromolecules 7 (2006) 415-418.
[16] Huang, M. h.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P.
Science 292 (2001) 1897-1899.
[17] Gao, P. X.; Wang, Z. L. J. Phys. Chem. B 108 (2004) 7534-7537.
[18] Roy, V. A. L.; Djurisic, A. B.; Chan, W. K.; Gao, J.; Lui, H. F.; Surya, C., Appl. Phys. Lett. 83 (2003) 141.
[19] Jiansheng, J.; Wang, G.; Wang, Q.; Chen, Y.; Han, X.; Wang, X.; Hou, J. G. J phys. Chem.
B 2004, 108, 11976.
[20] Ye, J.; Gu, S.; Chen, T.; Hu, L.; Qin, F.; Zhang, R.; Shi, Y.; Zheng, Y. J. Cryst. Growth. 243 (2002) 151.
[21] R. A. Swalin, “Thermodynamics of Solids”, John Wiley & Sons, New York, (1972) p. 335.
[22] B. Lin and Z. Fu, Appl. Phys. Lett. 79 (2001) 943-945.
[23] H. Morkoc, Nitride semiconductors and Devices, Springer, Heidelberg, 1999.
[24] 李新華,徐家趺.功能材料 36(5) (2005) 652 .
[25] R.A. Laudise, E.D. Kolb, and A.J. Caporaso, “Hydrothermal growthof large sound crystals of
zinc oxide”, J. Am. Ceram. Soc. 47 (1964) 9-12.
[26] E. Ohshima, H. Ogino, I. Niikua, M. Sato, M. Ito, T.Fukuda. J. Cryst. Growth 260, (2004) 166.
[27] J. W. Nielson, E. F. Dearborn. J. Phys. Chem. 64 (1962) 1762.
[28] K Oka, H. Shibata, S. Kashiwaya. J. Cryst. Growth, 237-239 (2002) 509.
[29] Y. S. Park, D. C. Reynolds. J. Appl. Phys. 38 (1966) 756.
[30] D. C. Look, D. C. Reynolds, J. R. Sizelove, R. L. Jones, C. W. Litton, G. Cantwell, W. C.
Harsch. Solid State Commun. 105 (1998) 399.
[31] D. C. Reynolds, C. W. Litton, D. C. Look, J. E. Hoelscher, B. Claflin, T. C. Collins,
B.Nemeth, J. Nause. J. Appl. Phys. 95 (2004) 4802.
[32] D. Pristterer, D. M. Hofmann, J. Sanna, B. K. Meyer, R. Tena-Zaer, V. Munoz-Sanjose, Th.
Frank,G. Pensl. Physica B (2006) 376.
[33] R. Triboulet, J. Perriere, Prog. Cryst. Growth Charact. Mater. 47 (2003) 65.
[34] K Tennakone et al., J. Phys. D: Appl. Phys. 31 (1998) 1492-1496.
[35] T. Prasada Rao, M.C. Santhoshkumar, Applied Surface Science 255 (2009) 7212–7215.
[36] C. Min, X. Shen, W. Sheng, Appl Phys A (2009) 96: 799–803.
[37] W Kubo et al., Chem. Comm. 54 (2002) 374-375.
[38] Chen-Hao Ku, Jih-JenWu, Nanotechnology 18 (2007) 505706.
[39] T. H. Fang, S. H. Kang, J. Appl. Phys. 105 (2009) 113512.
[40]R. Kumar , N. Khare, Thin Solid Films 516 (2008) 1302-1307.
[41] X. L. Zhang, Y. S. Kang, Inorganic Chemistry 45(2006)4186.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔