(3.237.178.91) 您好!臺灣時間:2021/03/07 01:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭昱明
研究生(外文):YU-MING CHENG
論文名稱:長期攝食多酚化合物對STZ誘導之糖尿病鼠之影響
論文名稱(外文):The Long-Term Influences of Polyphenolic Compounds on the STZ-Induced Diabetic Rats
指導教授:林麗雲林麗雲引用關係謝秋蘭謝秋蘭引用關係
指導教授(外文):LI-YUN LINCHIU-LAN HSIEH
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:食品暨應用生物科技所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:90
中文關鍵詞:糖尿病多酚化合物腎癌
外文關鍵詞:DiabetesPolyphenolic compoundRenal carcinoma
相關次數:
  • 被引用被引用:2
  • 點閱點閱:318
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高血糖會增加氧化壓力,長期持續性的高血糖為導致糖尿病併發症之基礎因素。氧化壓力在糖尿病患者白內障及腎癌之發病機制及原因扮演了非常關鍵的角色。
本研究為評估長期給予多酚化合物 (polyphenolic compounds) 處理下,對STZ (streptozotocin) 誘導糖尿病鼠之影響。SD (sprague-dawley) 大鼠腹腔注射STZ (50 mg/kg bw) 誘導為第一型糖尿病。當大鼠血糖大於220 mg/dL即分配給予不同的多酚化合物處理包括沒食子酸 (gallic acid; GA)、芸香苷 (rutin; R)、表沒食子兒茶素沒食子酸脂 (Epigallocatechin gallate; EGCG)、阿魏酸 (ferulic acid; FA) 與槲皮素 (quercetin; Q),劑量為每公斤體重70毫克,實驗共進行28週,最後評估酚類化合物之降血糖及其它生理效應。
結果發現僅有槲皮素具中度降血糖及促進胰島素分泌之功效。此外,槲皮素也具有抑制血清中丙二醛 (malondialdehyde; MDA) 生成及增加麩胱甘肽 (glutathione; GSH) 濃度之功效。蘇木紫-伊紅染色(hematoxylin & eosin stain; HE stain) 結果同樣也證實惟有槲皮素具有保護眼睛損傷之作用。然而,槲皮素也顯現出腎癌的加重。進一步以西方墨點法分析發現,槲皮素抑制腎臟p53、Bax與Bad之表現量,可能與其引發腎癌有密切關係。
總而言之,槲皮素具預防白內障功效也許與其降血糖及促胰島素分泌之生物活性有關,有些可能與GSH的增加有關。相反地,槲皮素對腎細胞具致癌性,可能與凋亡蛋白質表現之抑制有關。

關鍵詞 :糖尿病、多酚化合物、腎癌。

Hyperglycemia increases oxidative stress (OxS). Sustained hyperglycemia is the underlying factor for diabetic mellitus (DM) complication. OxS plays a major role in the aetiology and pathogenesis of cataract and renal carcinoma formation in the DM patients.
This study evaluated the effect of a long-term polyphenolic compounds therapy on the STZ-induced DM rats. Briefly, SD rats were given ip STZ (50mg/kg bw) to induce type 1 DM. Rats having blood sugar level over > 230mg/dL were selected for treatment with various polyphenolic compounds including gallic acid, rutin, EGCG, ferulic acid and quercetin at 70 mg/kg bw. The total course extended for 28 weeks. Finally evaluate the blood sugar and other physiological effect of phenol compound.
Results indicate that only quercetin was moderately hypoglycemic and potent insulin secretagougue. Furthermore, quercetin also inhibited at certain degree the formation of serum malondialdehyde (MDA) and increased the level of glutathione (GSH). The HE stained specimen also revealed that only quercetin had certain degree of protective effect on lesions of oculus. However, quercetin was shown to aggravate renal carcinoma (RCA). Further, quercetin repress kidney p53, Bax and Bad expression in western blot, which may close relation with its initiation renal carcinoma.
Conclusively, quercetin has prevention cataract effect which may be attributed to its hypoglycemic and insulin secretagougue bioactivity, and some due to increased GSH level effect. Conversely, quercetin is carcinogenic to renal cells. The action mechanism of quercetin in aggravating RCA may be due to its inhibition of apoptoic proteins.

Key words :Diabetes, Polyphenolic compound, Renal carcinoma

謝誌……………………………………………………………………………i
中文摘要………………………………………………………………………ii
英文摘要……………………………………………………………………iii
表目錄…………………………………………………………………………vi
圖目錄…………………………………………………………………………vii
前言……………………………………………………………………………1
文獻整理………………………………………………………………………4
一、 糖尿病
(一)、糖尿病簡介……………………………………………………………4
(二)、糖尿病定義……………………………………………………………5
(三)、糖尿病分類……………………………………………………………6
(四)、糖尿病併發症…………………………………………………………10
(五)、糖尿病誘發損傷之機制………………………………………………14
二、芭樂心葉
(一)、芭樂簡介………………………………………………………………21
(二)、芭樂之生理活性………………………………………………………21
(三)、芭樂之生理活性成分…………………………………………………22
三、多酚化合物之生理活性…………………………………………………26
四、Steptozotocin (STZ) 誘導糖尿病之動物模式……………………….29
研究目的………………………………………………………………………31
研究架構………………………………………………………………………33
材料與方法……………………………………………………………………34
一、 實驗器材
(一)、藥品試劑………………………………………………………………34
(二)、實驗用鼠飼料…………………………………………………………35
(三)、墊料……………………………………………………………………36
(四)、儀器……………………………………………………………………36
(五)、實驗動物………………………………………………………………37
二、實驗步驟與方法
(一)、常用溶液………………………………………………………………37
(二)、實驗動物飼養…………………………………………………………39
(三)、實驗動物誘導及分組…………………………………………………39
(四)、血糖濃度測定…………………………………………………………40
(五)、樣品之收集……………………………………………………………40
(六)、蛋白質之萃取…………………………………………………………41
(七)、胰島素濃度測定………………………………………………………41
(八)、MDA濃度測定…………………………………………………………41
(九)、Glutathione濃度測定………………………………………………41
(十)、蛋白質表現測定………………………………………………………42
(十一)、組織病理檢測………………………………………………………44
(十二)、統計分析……………………………………………………………45
結果與討論……………………………………………………………………46
結論……………………………………………………………………………56
參考文獻………………………………………………………………………78

行政院衛生署,2010。97年及98年國人主要死因死亡人數。
http://www.doh.gov.tw/cht2006/index_populace.aspx。
林育蟬. 2007. 芭樂心葉水萃取物對抑制葡萄糖及雙羰化合物誘導糖尿病血管併發症相關因子之功效評估. 弘光科技大學生物科技研究所碩士論文.
黃淑敏. 2009. 芭樂心葉水萃物對STZ誘導糖尿病大鼠改善之評估. 國立中興大學食品暨應用生物科技研究所碩士論文.
鍾詩楓、黃洽鑽、吳文權,2006。糖尿病視網膜病變。基層醫學,21卷5期。
中華民國糖尿病衛教協會,2007。糖尿病衛教核心教材。
Arnould, Y., Ooms, H. A. and Bastenie, P. A. 1969. Treatment of insulinoma with streptozotocin (letter). Lance i:1210-1211.
Atalay, M. and Laaksonen, D. E. 2002. Diabetes, oxidative stress and physical exercise. Journal of Sports Science and Medicine 1: 1-14.
Arts, I. CW. and Hollman, P. CH. 2005. Polyphenols and disease risk in epidemiologic studies. The American Journal of Clinical Nutrition 81(suppl):317S–25S.
Amaral, S., Moreno, A.J., Santos, M. S., Seica, R. and Ramalho-Santos, J. 2006. Effect of hyperglycemia on sperm and testicular cells of Goto-Kakizaki and streptozotocin-treated rat models for diabetes. Theriogenology 66:2056-2067.
Aslan, M., Orhan, D. D., Orhan, N., Sezik, E. and Yesilada, E. 2007. In vivo antidiabetic and antioxidant potential of Helichrysum plicatum ssp. plicatum capitulums in streptozotocin-induced-diabetic rats. Journal of Ethnopharmacology 109: 54–59.
Adisakwattana, S., Moonsan, P. and Yibchok-Anun, S. 2008. Insulin-releasing properties of a series of cinnamic acid derivatives in vitro and in vivo. Journal of Agricultural and Food Chemistry 56: 7838–7844.
American Diabetes Association. 2009. Diagnosis and classification of diabetes mellitus. Diabetes Care 32 Supp1 1: S62-7.
Blackard, W. G., Garcia, A. K. and Brown, C. L. 1970. Effect of streptozotocin on qualitative aspects of plasma insulin in a patient with a malignant islet cell tumor. Journal of Clinical Endocrinology and Metabolism. 31: 215-219.
Brownlee, M. 2001. Biochemistry and molecular cell biology of diabetic complications. Nature 414: 813-820.
Bartolome, A., Mandap, K., David, K.J., Sevilla, F. and Villanueva, J. 2006. SOS-red fluorescent protein (RFP) bioassay system for monitoring of antigenotoxic activity in plant extracts. Biosensors and Bioelectronics 21: 2114–2120.
Balakumar, P., Arora, M. K., Ganti, S. S., Reddy, G. and Singh, M. 2009. Recent advances in pharmacotherapy for diabetic nephropathy: Current perspectives and future directions. Pharmacological Research 60: 24-32.
Chen, J. W., Zhu, Z. Q., Hu, T. X. and Zhu, D. Y. 2002. Structure-activity relationship of natural flavonoids in hydroxyl radical-scavenging effects. Acta Pharmacologica Sinica 3: 667-672.
Crespy, V., Morand, C., Besson, C., Manach, C., Demigne, C.and Remesy, C. 2002. Quercetin, but not its glycosides, is absorbed from the rat stomach. Journal of Agricultural and Food Chemistry 50: 618 –21.
Chen, K. C., Hsieh, C. L., Peng, C. C., Hsieh-Li, H. M., Chiang, H. S., Huang, K. D. and Peng, R. Y. 2007. Brain derived prostate cancer DU-145 cells are effectively inhibited in vitro by guava leaf extracts. Nutrition Cancer 58: 93–106.
Chen, H. Y. and Yen, G. C. 2007. Antioxidant activity and free radical-scavenging capacity of extracts from guava (Psidium guajava L.) leaves. Food Chemistry 101: 686–694.
Chuang, P. T., Shen, S. C., Wu, N. J. and Wu, J. S. B. 2008. Anti-peroxidation effect of guava (Psidium guajava Linn.) Journal of the Science of Food and Agriculture 88:2173–2179.
Dombrowski, F., Klotz, L., Bannasch, P., and Evert, M. 2007. Renal carcinogenesis in models of diabetes in rats - metabolic changes are closely related to neoplastic development. Diabetologia 50; 2580–2590.
D’Archivio, M., Filesi, C., Di Benedetto, R., Gargiulo, R., Giovannini, C. and Masella, R. 2007. Polyphenols, dietary sources and bioavailability. Ann Ist super sAnItà 43: 348-361.
Fernandes, K. P. S., Bussadori, S. K., Marques, M. M., Bach, E., Wadt, N., Santos, E. M., Pavesi, V. C. and Martins, M.D. 1995. Healing and cytotoxic effects of Psidium guajava (Myrtaceae) leaf extracts. Revista de Saude Publica 29: 457–466.
Fowler, M. J. 2008. Microvascular and Macrovascular complications of diabetes. Clinical Diabetes 26: 77-82.
Fernandes, A. A., Novelli, E. L., Okoshi, K., Okoshi, M. P., Di Muzio, B. P., Guimarães, J. F. and Fernandes Junior, A. 2010. Influence of rutin treatment on biochemical alterations in experimental diabetes. Biomedicine and Pharmacotherapy 64(3): 214-9.
Grover, I.S. and Bala, S. 1993. Studies on antimutagenic effect of guava (Psidium guajava) in salmonella typhimurium. Mutatation Research 300: 1–3.
Gutiérrez, R. M., Mitchell, S. and Solis, R. V. 2008. Psidium guajava: a review of its traditional uses, phytochemistry and pharmacology. Journal of Ethnopharmacology 117: 1-27.
Horton, L., Fox, C., Corrin, B. and Sonksen, P. H. 1977. Strepzotocin-induced renal tumors in rats. British Journal of Cancer 36: 692–699.
Hilliard, J. J., Krause, H. M., Bernstein, J. I., Fernandez, J. A, Nguyen, V., Ohemeng, K. A. and Barrett, J. F. 1995. A comparison of active site binding of 4-quinolones and novel flavone gyrase inhibitors to DNA gyrase. Advances in Experimental Medicine and Biology 390: 59–69.
Hawkins, M., Barzilai, N., Liu, R., Hu, M., Chen, W. and Rossetti, L. 1997. Role of the glucosamine pathway in fat-induced insulin resistance. The journal of clinical investigation 99:2173-2182.
Hnatyszyn, O., Min˜o, J., Ferraro, G. and Acevedo, C. 2002. The hypoglycemic effect of Phyllanthus sellowianus fractions in streptozotocin-induced diabetic mice. Phytomedicine 9: 556–559.
Hanamura, T., Mayama, C., Aoki, H., Hirayama, Y. and Shimizu, M. 2006. Antihyperglycemic effect of polyphenols from acerola (Malpighia emarginata DC.) fruit. Bioscience, Biotechnology, and Biochemistry 70: 1813–1820.
Hsieh, C. L., Lin, Y. C., Ko, W. S., Peng, C. H., Huang, C. N. and Peng, R. Y. 2005. Inhibitory effect of some selected nutraceutic herbs on LDL glycation induced by glucose and glyoxal. Journal of Ethnopharmacology 102: 357-363.
Hsieh, C.L., Yang, M.H., Chyau, C.C., Chiu, C.H., Wang, H.E., Lin, Y.C., Chiu, W.T. and Peng, R.Y. 2007. Kinetic analysis on the sensitivity of glucose- or glyoxal-induced LDL glycation to the inhibitory effect of Psidium guajava extract in a physiomimic system. Biosystems 88: 92-100.
Hui, H., Tang, G., and Go, V. L. W 2009. Hypoglycemic herbs and their action mechanisms. Chinese Medicine 4: 11.
Hanhineva, K., Törrönen, R., Bondia-Pons, I., Pekkinen, J., Kolehmainen, M., Mykkänen, H. and Poutanen, K. 2010. Impact of dietary polyphenols on carbohydrate metabolism. International Journal of Molecular Sciences 11: 1365-1402.
Keogh, R. J., Dunlop, M. E. and Larkins, R. G. 1997. Effect of inhibition of aldose reductase on glucose flux, diacylglycerol formation, protein kinase C, and phospholipase A2 activation. Metabolism 46: 41-47.
Koya, D. and King, G. L. 1998. Protein kinase C activation and the development of diabetic complications. Diabetes 47: 859-866.
Kenchaiah, S., Evans, J. C., Levy, D., Wilson, P. W., Benjamin, E. J., Larson, M. G., Kannel, W. B. and Vasan, R. S. 2002. Obesity and the risk of heart failure. The New England Journal of Medicine 347(5): 305-13.
Kyselova, Z., Stefek, M. and Bauer, V. 2004. Pharmacological prevention of diabetic cataract. Journal of Diabetes and Its Complications 18: 129–140.
Kahn, S. E., Hull, R. L. and Utzschneider, K. M. 2006. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444: 840-846.
Kamalakkannan, N. and Stanely Mainzen Prince, P. 2006. Rutin improves the antioxidant status in streptozotocin-induced diabetic rat tissues. Molecular and Cellular Biochemistry 293: 211–219.
Kempf, K., Rathmann, W. and Herder, C. 2008. Impaired glucose regulation and type 2 diabetes in children and adolescents. Diabetes-metabolism research and reviews 24: 427-437.
Kumawat, M., Pahwa, M. B., Gahlaut, V. S. and Singh, N. 2009. Status of antioxidant enzymes and lipid peroxidation in type 2 diabetes mellitus with micro Vascular Complications. The Open Endocrinology Journal 3: 12-15.
Kannappan, S. and Anuradha, C. V. 2009. Insulin sensitizing actions of fenugreek seed polyphenols, quercetin and metformin in a rat model. Indian Journal of Medical Research 129: 401-408.
Luceri, C., Guglielmi, F., Lodovici, M., Giannini, L., Messerini, L. and Dolara, P. 2004. Plant phenolic 4-coumaric acid protects against intestinal inflammation in rats. Scandinavian Journal of Gastroenterology 39: 1128-1133.
Listerman, J., Huang, R. L., Geisberg, C. and Butler, J. 2007. Risk Factors for Development of Heart Failure. Current Cardiology Reviews 3: 1-9.
Mansford, K. R. and Opie, L. 1968. Comparison of metabolic abnormalities in diabetes mellitus induced by streptozotocin or by alloxan. Lancet 1 (7544): 670–1.
Mauer, S. M., Lee, C. S., Najarian, J. S. and Brown, D. M. 1974. Induction of malignant kidney tumors in rats with streptozotocin. Cancer Research 34: 158-160.
Marshall, S., Bacote, V. and Traxinger, R. R. 1991. Discovery of a metabolic pathway mediateing glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. The Journal of Biological Chemistry 266: 4706-4712.
Maritim, A. C., Sanders, R. A. and Watkins III, J. B. 2003. Diabetes, oxidative stress, and antioxidants: a review. Journal of Biochemical and Molecular Toxicology 17(1):24-38.
Manach, C., Mazur, A. and Scalbert, A. 2005. Polyphenols and prevention of cardiovascular diseases. Current Opinion in Lipidology 16(1):77-84
Modi, P. 2007. Diabetes beyond insulin: review of new drugs for reatment of diabetes mellitus. Current Drug Discovery Technologies 4: 39-47.
Mullen, W., Rouanet, J. M., Auger, C., Teissedre, P. L., Caldwell, S. T., Hartley, R. C., Lean, M. E., Edwards, C. A. and Crozier, A. 2008. Bioavailability of [2-(14)C]quercetin-40-glucoside in rats. Journal of Agricultural and Food Chemistry 2456: 12127–12137.
Moussa, S. A. 2008. Oxidative stress in diabetes mellitus. Romanian Journal of Biophysics 3: 225–236.
Nukatsuka, M., Yoshimura, Y., Nishida, M., and Kawada, J. 1990. Importance of the concentration of ATP in rat pancreatic beta cells in the mechanism of streptozotocin-induced cytotoxicity. Journal of Endocrinology 127: 161-165.
Nishikawa, T., Edelstein, D., Du, X. L., Yamagishi, S., Matsumura, T., Kaneda, Y., Yorek, M. A., Beebe, D., Oates, P. J., Hammes, H. P., Giardino, I. and Brownlee, M. 2000. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404: 787-790.
Neustadt, J. and Pieczenik, S. R. 2008. Medication-induced mitochondrial damage and disease. Molecular Nutrition and Food Research 52: 780-788.
Obatomi, D. K., Bikomo, E. O. and Temple, V. J. 1994. Anti-diabetic properties of the African mistletoe in streptozotocin-induced diabetic rats. Journal of Ethnopharmacology 43: 13-17.
Oh, W. K., Lee, C. H., Lee, M. S., Bae, E. Y., Sohn, C. B, Oh, H., Kim, B. Y. and Ahn, J. S. 2005. Antidiabetic effects of extracts from Psidium guajava. Journal of Ethnopharmacology 96: 411–415.
Ossola, B. 2008. Paradoxical co-existence of protective and toxic effects of quercetin in the same in vitro neurodegeneration model. European Journal of Pharmaceutical Sciences 34: S33, doi:10.1016/j.ejps.2008.02.088.
Özer, A. B., Kaman, D., Erhan, Ö. L. and Özer, S. 2008. EGCg supplementation improves oxidant and antioxidant status in kidney of rats exposed to sevoflurane. Fırat Tıp Dergisi 13(1): 05-08.
Pieper, G. M. and Riaz-ul-Haq, J. 1997. Activation of nuclear factor-kappaB in cultured endothelial cells by increased glucose concentration: prevention by calphostin C. Journal of Cardiovascular Pharmacology 30: 528-532.
Portilla, D., Dai, G., Peters, J. M., Gonzalez, F. J., Crew, M. D. and Proia, A. D. 2000. Etomoxir -induced PPARalpha-modulated enzymes protect during acute renal failure. American Journal of Physiology - Renal Physiology 278: F667-F675.
Peng, R.Y., Hsieh, C.L., Chen, K.C., 2007. Review on the Medicinal Use of Psidium gujava L. Recent Progress in Medicinal Plants, Vol 20. Phytopharmacology and Therapeutic Values Ⅱ STUDIUM PRESS, LLC, USA. 213-246.
Rice-Evans, C. A., Miller, N. J. and Paganga, G. 1996. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine 20 (7): 933-956.
Reusch, J. E. 2003. Diabetes, microvascular complications, and cardiovascular complications: what is it about glucose? The Journal of Clinical Investigation 112: 986-988.
Roy, C.K., Kamath, J.V., Asad, M., 2006. Hepatoprotective activity of Psidium guajava Linn. Indian Journal of Experimental Biology 44: 305–311.
Rolo, A. P. and Palmeira, C. M. 2006. Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicology and Applied Pharmacology 212: 167-78.
Ikarashi, N., Toda, T., Okaniwa, T., Ito, K., Ochiai, W. and Sugiyama, K. 2010. Anti-obesity and anti-diabetic effects of acacia polyphenol in obese diabetic KKAy mice fed high-fat diet. Evidence-based Complementary and Alternative Medicine 5: 614-624.
Sofue, M., Yoshimura, Y., Nishida, M. and Kawada, J. 1991. Uptake of nicotinamide by rat pancreatic beta cells with regard to streptozotocin action. Journal of Endocrinology 131: 135-138.
Scalbert, A. and Williamson, G. 2000. Dietary intake and bioavailability of polyphenols. Journal of Nutrition 130: 2073S-2085S.
Szkudelski, T. 2001. The mechanism of alloxan and streptozotocin action in β cells of the rat pancreas. Physiological Research 50: 537-546.
Shackelford, C., Long, G., Wolf, J., Okerberg, C. and Herbert, R. 2002. Qualitative and quantitative analysis of nonneoplastic lesions in toxicology studies. Toxicologic Pathology 30:93–96.
Scalbert, A., Manach, C., Morand, C. and Remesy, C. 2005. Dietary polyphenols and the prevention of diseases. Critical Reviews in Food Science and Nutrition 45: 287–306.
Seo, N., Ito, T., Wang, N., Yao, X., Tokura, Y., Furukawa, F., Takigawa, M. and Kinataka, S. 2005. Anti-allergic Psidium guajava extracts exert an antitumor effect inhibition of T regulatory cells and resultant augmentation of Th1 cells. Anticancer Research 25: 3763–3770.
Stanley Mainzen Prince, P. and Kamalakkannan, N. 2006. Rutin improves glucose homeostasis in streptozotocin diabetic tissues by altering glycolytic and gluconeogenic enzymes. Journal of Biochemical and Molecular Toxicology 20: 96–102.
Saura-Calixto, F., Serrano, J. and Gon˜I, I. 2007. Intake and bioaccessibility of total polyphenols in a whole diet. Food Chemistry 101: 492–501.
The Diabetes Control and Complications Trial Research Group. 1993. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The New England Journal of Medicine 329: 977–986 .
Turk, J., Corbett, J. A., Ramanadham, S., Bohrer, A. and McDaniel, M. L. 1993. Biochemical evidence for nitric oxide formation from streptozotocin in isolated pancreatic islets. Biochemical and Biophysical Research Communications 197: 1458-1464.
UK Prospective Diabetes Study (UKPDS) Group. 1998. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352: 837–853 .
Upadhya, S., Shanbhag, K. K., G, S., M, B. N. and Upadhya, S. 2004. A study of hypoglycemic and antioxidant activity of aegle marmelos in alloxan induced diabetic rats. Indian Journal of Physiology and Pharmacology 48(4): 476-480.
Vavra, J. J., Deboer, C., Dietz, A., Hanka, L. J. and Sokolski, W. T. 1959. Streptozotocin, a new antibacterial antibiotic. Antibiotics annual 7: 230-5.
Vessal, M., Hemmati, M. and Vasei, M. 2003. Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comparative Biochemistry and Physiology - Part C: Toxicology and Pharmacology 135C(3): 357-64.
Verschoyle, R. D., Steward, W. P. and Gescher, A. J. 2007. Putative cancer chemopreventive agents of dietary origin - how safe are they? Nutr. Cancer 59: 152–162.
Vivian Samuel, T. and Smilee Johncy, S. 2010. Evaluation of lipid peroxidation and antioxidant status in diabetes with and without complications. Journal of Biomedical Science and Research 2 (3): 162-166.
Williamson, J. R., Chang, K., Frangos, M., Hasan, K. S., Ido, Y., Kawamura, T., Nyengaard, J. R., van den Enden, M., Kilo, C. and Tilton, R. G. 1993. Hyperglycemic pseudohypoxia and diabetic complications. Diabetes 42: 801-813.
Williamson, G. and Manach, C. 2005. Bioavailability and bioefficacy of polyphenols in humans. II. review of 93 intervention studies. The American Journal of Clinical Nutrition 81(suppl):243S–55S.
Xia, P., Inoguchi, T., Kern, T. S., Engerman, R.L., Oates, P.J. and King, G.L. 1994. Characterization of the mechanism for the chronic activation of diacylglycerol-protein kinase C pathway in diabetes and hypergalactosemia. Diabetes 43: 1122-1129.
Xia, P., Kramer, R. M. and King, G. L. 1995. Identification of the mechanism for the inhibition of Na+, K(+)-adenosine triphosphatase by hyperglycemia involving activation of protein kinase C and cytosolic phospholipase A2. The Journal of Clinical Investigation 96: 733-740.
Yerneni, K. K., Bai, W., Khan, B. V., Medford, R. M. and Natarajan, R. 1999. Hyperglycemia-induced activation of nuclear transcription factor kappaB in vascular smooth muscle cells. Diabetes 48: 855-864.
Yen, G. C., Duh, P. D., Tsai, H.-L. and Huang, S. L. 2003. Pro-oxidative properties of flavonoids in human lymphocytes. Bioscience, Biotechnology, and Biochemistry 67: 1215–1222.
Yusof, R.M. and Said, M. 2004. Effect of high fibre fruit (Guava-Psidium guajava L.) on the serum glucose level in induced diabetic mice. Asia Pacific Journal Clinical Nutrition 13, S135.
Yen, G. C., Yeh, C. T. and Chen, Y. J. 2004. Protective effect of Mesona procumbens against tert-butyl hydroperoxide-induced acute hepatic damage in rats. Journal of Agricultural and Food Chemistry 52: 4121-4127.
Yamagishi, S. and Imaizumi, T. 2005. Diabetic vascular complications: pathophysiology, biochemical basis and potential therapeutic strategy. Current Pharmaceutical Design 11: 2279-2299.
Yamabe, N., Yokozawa, T., Oya, T. and Kim, M. 2006. Therapeutic potential of (-)-epigallocatechin 3-O-gallate on renal damage in diabetic nephropathy model rats. The journal of pharmacology and experimental therapeutics 319:228–236.
Zhu, B. T. and Liehr, J. G. 1994. Quercetin increases the severity of estradiol-induced tumorigenesis in hamster kidney. Toxicology and Applied Pharmacology 125: 149–158.
Zhu, B. T. and Liehr, J. G. 1996. Inhibition of catechol O-methyltransferase-catalyzed O-methylation of 2- and 4-hydroxyestradiol by quercetin. Possible role in estradiol-induced tumorigenesis. The Journal of Biological Chemistry 271: 1357–1363.
Zhang, F., Ye, C., Li, G., Ding, W., Zhou, W., Zhu, H., Chen, G., Luo, T., Guang, M., Liu, Y., Zhang, D., Zheng, S., Yang, J., Gu, Y., Xie, X. and Luo, M. 2003. The rat model of type 2 diabetic mellitus and its glycometabolism characters. Experimental Animals 52: 401–407.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔