跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/04 14:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳惠青
研究生(外文):Hui- Ching Wu
論文名稱:益生孅-23複方產品對於餵食高膽固醇飲食倉鼠的脂質代謝及腸道菌相的影響
論文名稱(外文):Effects of PROBIO S-23 complex product on lipid metabolism and intestinal microflora of hamsters fed on high-cholesterol diet
指導教授:蔡政志蔡政志引用關係
指導教授(外文):Cheng-Chih Tsai
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:食品暨應用生物科技所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
畢業學年度:99
語文別:中文
論文頁數:115
中文關鍵詞:益生菌倉鼠膽固醇高脂血症三酸甘油酯益生孅-23
外文關鍵詞:ProbioticsHamstersCholesterolHyperlipidemiaTriglyceridePROBIO S-23
相關次數:
  • 被引用被引用:1
  • 點閱點閱:480
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高脂血症是引起心血管疾病的危險因子之一,然而目前的藥物治療成本高且具有副作用等缺點,因此本研究擬開發降低膽固醇之益生菌輔助療法。主要目的為探討在高油脂高膽固醇飲食條件下,益生菌複方產品對於倉鼠之脂質代謝與腸道菌相的影響。將50隻雄性倉鼠分為五組,分別為控制組 (Control group),高油脂高膽固醇組 (High fat plus high cholesterol diet, HFC group) 以及低、中、高劑量益生孅-23 (PROBIO S-23) 之試驗組。控制組倉鼠餵食AIN-76基礎飼料,高油脂高膽固醇飼料配方為AIN-76基礎飼料,調配添加 12% 玉米油、3% 動物油及 0.5% 膽固醇。倉鼠經誘導十天後,使倉鼠成為高膽固醇血症狀態,開始進入實驗期,為期十週。在實驗期間,記錄體重及攝食量,每兩週收集一次血清樣本,分析膽固醇、三酸甘油酯、低密度脂蛋白、高密度脂蛋白和脂質過氧化指標硫代巴比妥酸反應物 (Thiobarbituric acid reactive substance, TBARS) 之濃度,並於第0和第9週收集新鮮糞便及犧牲後收集肝臟組織進行分析。結果顯示,PROBIO S-23低、中、高劑量組與HFC組之倉鼠相較,最終平均體重下降幅度分別為8.07%、11.36%、8.09%,在攝食方面,發現各組間倉鼠每日攝食量並無明顯差異。益生孅-23複方產品可顯著降低高膽固醇血症倉鼠的血清總膽固醇、低密度脂蛋白膽固醇、三酸甘油酯和TBARS濃度 (P<0.05)。但高密度脂蛋白膽固醇沒有顯著改變。而肝臟的總膽固醇、三酸甘油酯和TBARS的數值亦皆明顯下降 (P<0.05)。在肝臟功能檢測方面,血清肝指數麩草酸轉胺基酶 ( Glutamyl oxaloacetic transaminase, GOT)、麩丙酮酸轉胺基酶 (Glutamyl pyruvic transaminase, GPT) 與鹼性磷酸酶 (Alkaline phosphatase, ALP) 的數值亦明顯降低 (P<0.05),且白蛋白與球蛋白的比值 (Albumin/ Globulin ratio) 有升高的情況。此外,在第九週後,糞便中乳酸桿菌和雙歧桿菌的活菌數,餵食益生孅-23複方產品高劑量組與控制組做比較,分別增加2.77及1.4 對數值。綜合上述,證實益生孅-23複方產品具有改善高油脂高膽固醇飲食所引起的肥胖體質、脂質異常及肝臟機能損害的功效,亦可降低體內脂質過氧化物的生成,並增加腸道益生菌的數量,進而促進腸道微生物菌相的平衡。
Hyperlipidemia is considered as one of the risk factors to cause cardiovascular diseases. However, present medication appears the shortcomings of high cost and side effects. Therefore, this study tends to develop a complementary therapy with probiotics to reduce cholesterol. The aim of this study is to investigate the effects of probiotics complex products on lipid metabolism and intestinal microflora of hamsters with high fat plus high cholesterol diet. Fifty male hamsters were divided into five groups, including the control group, and the experiment groups with high fat plus high cholesterol diet (HFC group), low-, medium-, and high-dose PROBIO S-23. The control group were fed basal diet AIN-76 with 12% corn oil, 3% lard, and 0.5% cholesterol. After 10-day induction, these hamsters appeared hypercholesterolemia. The experiment then started for 10 weeks. The weights and the food intake were recorded. Serum was collected twice a week for analyzing the concentration of cholesterol, triglyceride, low density lipoprotein (LDL), high density lipoprotein (HDL), and the lipid peroxidation index such as thiobarbituric acid reactive substance (TBARS). Fresh faeces and liver were also collected on the zero and the ninth week for analysis. The results showed that the average weights of the groups with low-, medium-, and high-dose PROBIO S-23 reduced 8.07%, 11.36%, and 8.09%, respectively, in comparison with HFC group. In terms of daily food intake, there was no obvious difference among the hamsters in all groups. PROBIO S-23 complex products could remarkably decrease the concentration of total serum cholesterol, LDL cholesterol, triglyceride, and TBARS (P<0.05) of the hamsters with hypercholesterolemia. However, HDL cholesterol did not show significant difference. The total cholesterol, triglyceride, and TBARS in liver presented obvious decrease (P<0.05). In regard to the test on liver function, glutamyl oxaloacetic transaminase (GOT), glutamyl pyruvic transaminase (GPT), and alkaline phosphatase (ALP) appeared significant decrease (P<0.05); and the albumin/ globulin ratio was increased. Moreover, comparing the viable count of Lactobacillus and Bifidobacterium in the faeces after nine weeks, both the groups fed with high-dose PROBIO S-23 products and the control group increased 2.77 and 1.4 logarithms, respectively. In conclusion, PROBIO S-23 products improved the effect on obesity, abnormal lipid, and impaired liver function resulted from high fat plus high cholesterol diet. Besides, they could reduce the generation of lipid peroxide, increase the number of probiotics in intestine, and facilitate the balance of intestinal microbial.
目 錄

中文摘要 I
Abstract III
目 錄 V
表目錄 VIII
圖目錄 X
第壹章 前言 1
第貳章 文獻整理 3
一、血脂質及脂蛋白之介紹 3
(一)膽固醇 4
(二)三酸甘油酯 5
(三)乳糜微粒 6
(四)極低密度脂蛋白 6
(五)低密度脂蛋白 6
(六)高密度脂蛋白 7
二、高脂血症的定義及分類 7
(一)高脂血症之定義 7
(二)高脂血症之分類 8
三、心血管疾病 9
四、高脂血症與心血管疾病的相關性 13
五、心血管疾病與代謝症候群的相關性 13
六、代謝症候群與非酒精性脂肪肝的相關性 15
七、自由基對生物體之傷害 16
(一)自由基 16
(二)自由基來源 16
(三)活性氧 17
(四)脂質氧化傷害 17
(五)自由基與疾病關係 18
八、腸道菌相與健康 18
九、益生菌及益生質 21
(一)益生菌的定義 21
(二)益生質的定義 21
(三)益生菌和益生質的種類及功效 22
十、乳酸菌 23
(一)乳酸菌的定義 23
(二)乳酸菌的種類及應用 23
(三)乳酸菌之保健功效 24
(四)單株乳酸菌與多重乳酸菌株之比較 28
十一、 乳酸菌降膽固醇的功效 29
(一)降膽固醇的機制 29
(二)體外試驗 32
(三)動物試驗 33
(四)人體試驗 35
第参章 實驗架構 37
第肆章 材料與方法 38
一、實驗材料 38
(一)實驗動物 38
(二)飼料配製 38
(三)試驗樣品用量 40
(四)儀器設備 42
(五)選擇性培養基 42
二、實驗方法 44
(一)動物分組與飼養 44
(二)試驗動物致高血脂模式. 44
(三)試驗物質給予期間及途徑 44
(四)實驗動物樣品採集 45
(五)動物犧牲 45
(六)血液分析 46
(七)肝臟分析 52
(八)糞便菌相分析 53
(九)統計分析 53
第伍章 結果與討論 54
一、實驗期間倉鼠健康情況、體重、攝食量及臟器重量之變化 54
(一)外觀和活動力 54
(二)體重與攝食量變化 54
(三)臟器重量的變化 55
二、血液生化檢驗 55
(一)血脂質之變化 55
(二)血清脂質過氧化TBARS濃度的變化 59
(三)肝臟功能檢測 59
(四)腎臟功能檢測 61
(五)血中葡萄糖濃度之變化 62
三、肝臟檢測 62
(一)肝臟脂質之變化 62
(二)肝臟脂質過氧化TBARS濃度的變化 63
四、腸道糞便菌相之變化 64
第陸章 結論 65
第柒章 參考文獻 97


表目錄

表1. 人類血漿脂蛋白的特性與組成 3
表2. 血脂正常及異常值 8
表3. 中華民國血脂異常分類 9
表4. 代謝症候群之判定標準 14
表5. 實驗動物飼料組成份 39
表6. 實驗動物與人體表面積比等效劑量換算比率表 41
表7. 餵食不同濃度益生孅-23複方產品十週後對於高油脂高膽固醇飲食之倉鼠體重增加及攝食量的影響 66
表8. 餵食不同濃度益生孅-23複方產品十週後對於高油脂高膽固醇飲食之倉鼠肝重及相對肝重之影響 67
表9. 餵食不同濃度益生孅-23複方產品十週期間對於高油脂高膽固醇飲食之倉鼠血清總膽固醇的影響 68
表10. 餵食不同濃度益生孅-23複方產品十週期間對於高油脂高膽固醇飲食之倉鼠血清三酸甘油脂的影響 69
表11. 餵食不同濃度益生孅-23複方產品十週期間對於高油脂高膽固醇飲食之倉鼠血清高密度脂蛋白的影響 70
表12. 餵食不同濃度益生孅-23複方產品十週期間對於高油脂高膽固醇飲食之倉鼠血清低密度脂蛋白的影響 71
表13. 餵食不同濃度益生孅-23複方產品十週期間對於高油脂高膽固醇飲食之倉鼠血清脂質過氧化物含量的影響 72
表14. 餵食不同濃度益生孅-23複方產品十週後對於高油脂高膽固醇飲食之倉鼠血清轉胺酵素活性的影響 73
表15. 餵食不同濃度益生孅-23複方產品十週後對於高油脂高膽固醇飲食之倉鼠血清酵素活性的影響 74
表16. 餵食不同濃度益生孅-23複方產品十週後對於高油脂高膽固醇飲食之倉鼠血清膽紅素的影響 75
表17. 餵食不同濃度益生孅-23複方產品十週後對於高油脂高膽固醇飲食之倉鼠血清蛋白質的影響 76
表18. 餵食不同濃度益生孅-23複方產品十週後對於高油脂高膽固醇飲食之倉鼠血清尿素氮、肌酸酐及尿酸濃度的影響 77
表19. 餵食不同濃度益生孅-23複方產品十週後對於高油脂高膽固醇飲食之倉鼠血中葡萄糖濃度的影響 78
表20. 餵食不同濃度益生孅-23複方產品十週後對於高油脂高膽固醇飲食之倉鼠肝中膽固醇及三酸甘油酯含量的影響 79
表21. 餵食不同濃度益生孅-23複方產品十週後對於高油脂高膽固醇飲食之倉鼠肝臟脂質過氧化物含量的影響 80
表22. 餵食不同濃度益生孅-23複方產品之倉鼠糞便中乳酸桿菌和雙岐桿菌之總菌數 81

圖目錄

圖1. 膽固醇之結構 4
圖2. 三酸甘油酯結構 5
圖3. 動脈粥狀硬化中血管內皮細胞功能失調 10
圖4. 動脈粥狀硬化中脂肪條紋的形成 11
圖5. 動脈粥狀硬化複雜性病變之形成 11
圖6. 動脈粥狀硬化中不穩定的纖維斑塊 12
圖7. 將保加利亞乳酸桿菌置於 (a) 不含膽固醇和(b)添加膽固醇之MRS中培養,利用掃描式電子顯微進行分析 30
圖8. 膽鹽水解酶降低膽固醇之機制 31
圖9. 餵食不同濃度益生孅-23複方產品和控制組十週期間倉鼠之體重變化 82
圖10. 餵食不同濃度益生孅-23複方產品十週期間對於高油脂高膽固醇飲食之倉鼠血清總膽固醇的影響 83
圖11. 餵食不同濃度益生孅-23複方產品十週期間對於高油脂高膽固醇飲食之倉鼠血清三酸甘油脂的影響 84
圖12. 餵食不同濃度益生孅-23複方產品十週期間對於高油脂高膽固醇飲食之倉鼠血清高密度脂蛋白的影響 85
圖13. 餵食不同濃度益生孅-23複方產品十週期間對於高油脂高膽固醇飲食之倉鼠血清低密度脂蛋白的影響 86
圖14. 餵食不同濃度益生孅-23複方產品十週期間對於高油脂高膽固醇飲食之倉鼠血清脂質過氧化物含量的影響 87
圖15. 餵食不同濃度益生孅-23複方產品十週後對於高油脂高膽固醇飲食之倉鼠血清麩草酸轉胺基酶活性的影響 88
圖16. 餵食不同濃度益生孅-23複方產品十週後對於高油脂高膽固醇飲食之倉鼠血清麩丙酮酸轉胺基酶活性的影響 89
圖17. 餵食不同濃度益生孅-23複方產品十週後對於高油脂高膽固醇飲食之倉鼠血清鹼性磷酸酶活性的影響 90
圖18. 餵食不同濃度益生孅-23複方產品十週後對於高油脂高膽固醇飲食之倉鼠血清白蛋白/球蛋白比值的影響 91
圖19. 餵食不同濃度益生孅-23複方產品十週後對於高油脂高膽固醇飲食之倉鼠肝臟膽固醇含量的變化 92
圖20. 餵食不同濃度益生孅-23複方產品十週後對於高油脂高膽固醇飲食之倉鼠肝臟三酸甘油脂含量的變化 93
圖21. 餵食不同濃度益生孅-23複方產品十週後對於高油脂高膽固醇飲食之倉鼠肝臟脂質過氧化物含量的影響 94
圖22. 餵食不同濃度益生孅-23複方產品之倉鼠糞便中Lactobacillus之菌數 95
圖23. 餵食不同濃度益生孅-23複方產品之倉鼠糞便中Bifidobacterium之菌數 96


中華民國血脂及動脈硬化學會。2009。台灣血脂異常防治共識-血脂異常預防及診療臨床指引。臺北。
白培英。2007。預防猝死,冠心病高危險群治療需知。中國醫訊。53: 15-18。
行政院衛生署國民健康局。2003。高血脂防治手冊。遠流出版社。台北。
行政院衛生署食品衛生處。2003。健康食品之調節血脂功能評估方法。
行政院衛生署。2007。健康食品之腸胃道功能改善評估方法。
行政院衛生署國民健康局網站。2007。成人代謝症候群之判定標準。網址: http://www.bhp.doh.gov.tw
行政院衛生署國民健康局。2007。台灣地區高血壓、高血糖、高血脂之追蹤調查研究。
朱立涵。2007。乳酸菌發酵之山苦瓜牛奶豆漿與枸杞牛奶豆漿預防動脈粥狀硬化之評估。國立臺灣大學生命科學院微生物與生化研究所碩士論文。
林晏瑜。2003。高膽固醇治療的新指標。成醫藥誌。13: 1-3。
苗明三。1997。實驗動物和動物實驗技術。中國中醫藥出版社。北京。
柳翰淩、周雨霞、烏尼、侯先志、2006。乳製品中具有降膽固醇功能乳酸菌的體外篩選。乳業科學與技術。28:9-11。
張姿儀。2010。篩選具降脂功能之益生菌。靜宜大學食品營養學系碩士論文。
趙娉婷。2007。血脂高,問題大,藥物治療仍須配合飲食運動。中國醫訊。43: 40-41。
蔡英傑。2006。健康人生始於腸道保健。科學月刊。37: 100-103。
劉禧賢。2003。海參體蛋白多醣之分離及其抗氧化、抗致突變性與降血脂之研究。國立中興大學食品科學研究所博士論文。


Aattour, N. and Lemonnier, D. 1997. Production of interferon induced by Streptococcus thermophilus: role of CD4+ and CD8+ lymphocytes. J. Nutri. Biochem. 8: 25-31.
Adolfsson, O., Meydani, S.N. and Russell, RM. 2004. Yogurt and gut function. Am. J. Clin. Nutr. 80: 245–256.
Agerholm-Larsen, L., Raben, A., Haulrik, N., Hansen, A. S., Manders, M. and Astrup, A. 2000. Effect of 8 week intake of probiotic milk products on risk factors for cardiovascular diseases. Eur. J. Clin. Nutr. 54:288-297.
Amin, K.A., Hameid, H.A. and Abd Elsttar, A.H. 2010. Effect of food azo dyes tartrazine and carmoisine on biochemical parameters related to renal, hepatic function and oxidative stress biomarkers in young male rats. Food Chem. Toxicol. 48: 2994–2999.
American Institute of Nutrition. 1977. Report of the American institute of nutrition and hoc committee on standards for nutritional studies. J. Nutr. 107: 1340-1349.
Anuradha, S. and Rajeshwari, K. 2005. Probiotics in health and disease. JIACM. 6: 67-72.
Arora, R. C., Agarwal, N., Arora, S. and Pandey, A. 1992. Dietary cholesterol induced changes in serum lipoproteins in healthy females. Materia Medica. Polona. 24: 17-19.
Axelsson, L. 2004. Lactic acid bacteria: Classification and physiology. In S. Salminen, A. von Wright, & A. Ouwehand (Eds.), Lactic acid bacteria: microbiological and functional aspects (pp. 1–66). New York: Marcel Dekker, Inc.
Baroutkoub, A., Mehdi, R.Z., Beglarian, R., Hassan, J., Zahra, S., Mohammad, M.S. and Mohammad hadi, E. 2010. Effects of probiotic yoghurt consumption on the serum cholesterol levels in hypercholestromic cases in Shiraz, southern Iran. Sci. Res. Essays. 5: 2206-2209.
Bausserman, M. and Michail, S. 2005. The use of Lactobacillus GG in irritable bowel syndrome in children: a double-blind randomized control trial. J. Pediatr. 147: 197-201.
Begley, M., Hill, C. and Gahan, C.G.M. 2006. Bile salt hydrolase activity in probiotics. Appl. Environ. Microbiol. 72:1729-1738.
Bernet-Camard, M. F., Lievin, V., Brassart, D., Neeser, J. R., Servin, A. L. and Hudault, S. 1997. The human Lactobacillus acidophilus LA1 secretes a nonbacteriocin antibacterial substance(s) active in vitro and in vivo. Appl. Environ. Microbiol. 63:2747-2753.
Bhathena, J., Martoni, C., Kulamarva, A., Urbanska, A.M., Malhotra, M. and Prakash, S. 2009. Orally delivered microencapsulated live probiotic formulation lowers serum lipids in hypercholesterolemic hamsters. J. Med. Food 12: 310-319.
Bielecka, M., Biedrzycka, E. and Majkowska, A. 2002. Selection of probiotics and prebiotics for synbiotic and confirmation of their in vivo effectiveness. Food Res. Int. 35: 139-144.
Biswas, A., Biswas, S. and Viegas, OA. 2004. Effect of etonogestrel subdermal contraceptive implant (implanon) on liver function tests a randomized comparative study with norplant implants. Contraception 70: 379-382.
Brousseau, M.E., Santamarina-Fojo, S., Vaisman, B.L., Applebaum- Bowden, D., Berard, A.M., Talley, G.D., Brewer, Jr. H.B. and Hoeg, J.M. 1997. Overexpression of human lecithin: cholesterol acyltransferase in cholesterol-fed rabbits: LDL metabolism and HDL metabolism are affected in a gene dose-dependent manner. J. Lipid Res. 38: 2537–2547.
Buck, L.M. and Gilliland, S.E. 1994. Comparisons of freshly isolated strains of Lactobacillus acidophilus of human intestinal origin for ability to assimilate cholesterol during growth. J. Dairy Sci. 77: 2925–2933.
Calvo, D., Gomez-Coronado, D., Suarez, Y., Lasuncion, M.A. and Vega, M.A. 1998. Human CD36 is a high affinity receptor for the native lipoproteins HDL, LDL, and VLDL. J. Lipid Res. 39: 777–788.
Cannon, J.P., Lee, T.A., Bolanos, J.T. and Danziger, L.H. 2005. Pathogenic relevance of Lactobacillus: a retrospective review of over 200 cases. Eur. J. Clin. Microbiol. Infect. Dis. 24: 30–40.
Chen, L., Pan, D.D., Zhou, J. and Jiang, Y.Z. 2005. Protective effect of seleniumenriched Lactobacillus on CCl4-induced liver injury in mice and its possible mechanisms. World J. Gastroenterol. 11: 5795–800.
Chien, Y.L., Wu, L.Y., Lee, T.C. and Hwang. L.S. 2010. Cholesterol-lowering effect of phytosterol-containing lactic-fermented milk powder in hamsters. Food Chem. 119: 1121-1126.
Chikai, T., Nakao, H. and Uchida, K. 1987. Deconjugation of bile acids by human intestinal bacteria implanted in germ free rats. Lipids 22: 669–671.
Chiu, C.H., Lu, T.Y., Tseng, Y.Y. and Pan, T.M. 2006. The effects of Lactobacillus-fermented milk on lipid metabolism in hamsters fed on high-cholesterol diet. Appl. Microbiol. Biotechnol. 71: 238-245.
Coconnier, M.H., Lievin, V., Bernet-Camard, M.F., Hudault S. and Servin, A.L. 1997. Antibacterial effect of the adhering human Lactobacillus acidophilus strain LB. Antimicrob. Agents Chemother. 41: 1046-1052.
Cole, T.G., Klotzsch, S.G. and McNamara, J.R. Measurement of triglyceride concentration. 1997. In: Rifai, N., Warnick, G.R., Domiminiczak, M.H., eds. Handbook of lipoprotein testing. Washington:AACC Press,; pp 115-126.
Colpo, A. 2005. LDL cholesterol:”bad” cholesterol, or bad science? J. Am. Phys. Surg. 10: 83-89.
Cooper, A.D. 1997. Hepatic uptake of chylomicron renmants. J. Lipid Res. 38: 2173-2192.
Corzo, G. and Gilliland, S.E. 1999. Bile salt hydrolase activity of three strains of Lactobacillus acidophilus. J. Dairy Sci. 82: 472-480.
Cui, Y., Wang, C., Wei L.X., Wang, X., Lin, C.L., Zhao, X., Fu, N. and Gen, L.F. 2010. Two stomach-originated Lactobacillus strains improve Helicobacter pylori infected murine gastritis. World J. Gastroenterol. 16: 445-452.
Cummings, J.H. and Macfarlane, G. 2002. Gastrointestinal effects of prebiotics. Br J. Nutr. 87: 145-151.
Davies, K.J. 1987. Protein damage and degradation by oxygen radicals. J. Biol. Chem. 262: 9895-9901.
Deeg, R. and Ziegenhorn, J. 1983. Kinetic enzymic method for automated determination of total cholesterol in serum. Clin. Chem. 29: 1798-1802.
de Vrese, M. and Marteau, P.R. 2007. Probiotics and Prebiotics: effects on diarrhea. J. Nutr. 137: 803- 811.
de Vuyst, L. and Tsakalidou, E. 2008. Streptococcus macedonicus, a multi-functional and promising species for dairy fermentations. Int. Dairy J. 18: 476-485.
del Rio, D., Stewart, A.J. and Pellegrini, N. 2005. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis. 15: 316-328.
Dore, J. and Corthier G. 2010. The human intestinal microbiota. Gastroenterol Clin Biol. 1: S7—S15.
Ebrahimi, M.T., Ouwehand, A.C., Hejazi, M.A. and Jafari, P. 2011. Traditional Iranian dairy products: A source of potential probiotic lactobacilli. African J Microbiol. Res. 5:20-27.
Eswara M., Kavitha, B., Srikanth, J. and Velmani G. 2010. Probiotics as potential therapies in human gastrointestinal health. Int. J. Pharm. Sci. 1: 96-110.
Fang, Y.Z., Yang, S. and Wu, G. 2002. Free radicals, antioxidants, and nutrition. Nutr. 18: 872-879.
Fazeli, H., Moshtaghian, J., Mirlohi, M. and Shirzadi1, M. 2010. Reduction in serum lipid parameters by incorporation of a native strain of Lactobacillus plantarum A7 in mice. Ira. J. Diabetes Lipid Disorder. 9: 1-7.
FAO (Food and Agriculture Organization of the United Nations). 2001. Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria. In the Joint FAO/WHO Expert Consultation report on Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria.
Folch, J., Lees, M. and Stanley, G.H. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226: 497-509.
Fuhrman, M.P. 2002. The albumin–nutrition connection: separating myth from fact. Nutr. 18: 199-200.
Fukushima, M. and Nakano, M. 1995. The effect of a probiotic on faecal and liver lipid class in rats. Br J Nutr. 13: 701-710.
Fukushima, M. and Nakano, M. 1996. Effects of mixture of organisms, Lactobacillus acidophilus or Streptococcus faecalis on cholesterol metabolism in rats fed on a fat- and cholesterol-enriched diet. Br. J. Nutr. 76: 857–867.
Fukushimk, M., Yamada, A., Endo, T. and Nakano, M. 1999. Effects of a mixture of organisms, Lactobacillus acidophilus or Streptococcus faecalis on 6-desaturase activity in the livers of rats fed a fat and cholesterol enriched diet. Nutr. 15: 373-378.
Fuller, R. 1989. Probiotics in man and animals. J. Appl. Bacteriol. 66:365-378.
Fuller, R. and Gibson, G.R. 1998. Probiotics and prebiotics: microflora management for improved gut health. Clin Microbiol Infect. 4: 477-480.
Fungwe, T.V., Cagen, L., Wilcox, H.G. and Heiberg, N. 1992. Regulation of hepatic secretion of very low density lipoprotein by dietary cholesterol. J. Lipid Res. 33: 179-194.
Fuster, V., Gotto, A.M., Libby, P. Loscalzo, J. and McGill H.C. 1996. Task force 1. Pathogenesis of coronary disease: the biologic role of risk factors. J. Am. Coll Cardiol. 27: 964-976.
Gibson, G.R. and Roberfroid, M.B. 1995. Dietary modulation of the colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 125: 1401–1412.
Gilliland, S.E., Bruce, B.B., Bush, L.J. and Staley, T.E. 1980. Comparison of two strains of Lactobacillus acidophilus as dietary adjuncts for young calves. J. Dairy Sci. 63: 964-972.
Gilliland, S.E., Nelson, C.R. and Maxwell, C. 1985. Assimilation of cholesterol by Lactobacillus acidophilus. Appl. Environ. Microbiol. 49: 377-381.
Goossens, D., Jonkers, D., Russel, M. and Thijs, A., van den Bogaard A., Stobberingh E. and Stockbrugger R. 2005. Survival of the probiotic, L. plantarum 299v and its effects on the faecal bacterial flora, with and without gastric acid inhibition. Dig. Liver Dis. 37: 44–50.
Goossens, G.H. 2008. The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance. Physiol. Behav. 94: 206–218.
Gopal, P.K., Prasad, J., Smart J. and Gill. H.S. 2001. In vitro adherence properties of Lactobacillus rhamnosus DR20 and Bifidobacterium lactis DR10 strains and their antagonistic activity against an enterotoxigenic Escherichia coli. Int. J. Food Microbiol. 67: 207-216.
Grundy, S.M. 2006. Metabolic syndrome: connecting and reconciling cardiovascular and diabetes worlds. J. Am. Coll Cardiol. 47: 1093–1100.
He, L., Shen, P., Fu, Q., Li. J., Dan, M., Wang, X. and Jia, W. 2009. Nephro-protective effect of kangqianling decoction on chronic renal failure rats. J. Ethnopharmacol. 122: 367–373.
Hepner, G., Fried, R., Jeor, S.S., Fusetti, L. and Morin, R. 1979. Hypercholesterolemic effect of yogurt and milk. Am. J. Clin. Nutr. 32: 19-24
Higashikawa, F., Noda, M., Awaya, T., Nomura, K., Oku, H. and Sugiyama, M. 2010. Improvement of constipation and liver function by plant-derived lactic acid bacteria: a double-blind, randomized trial. Nutr. 26: 367–374.
Hwang, H.J. and Kim, S.H. 2010. Inverse relationship between fasting direct bilirubin and metabolic syndrome in korean adults. Clinica. Chimica. Acta. 411: 1496–1501.
Ibrahim, W., Lee, U.S., Yeh, C.C., Szabo, J., Bruckner, G. and Chow, C.K. 1997. Oxidative stress and antioxidant status in mouse liver: effects of dietary lipid, vitamin E and iron. J Nutr. 127: 1401-1406.
Ishikawa, H., Kutsukake, E., Fukui, T., Sato, I., Shirai, T., Kurihara, T., Okada, N., Danbara, H., Toba, M., Kohda, N., Maeda, Y. and Matsumoto, T. 2010. Oral administration of heat-killed Lactobacillus plantarum strain b240 protected mice against Salmonella enterica serovar typhimurium. Biosci. Biotechnol. Biochem. 74: 1338-1342.
Izawa, S., Okada, M., Matsui, H. and Horita, Y. 1997. A new direct method for measuring HDL cholesterol which does not produce any biased values. J Med. Pharm. Sci. 37: 1385-1388.

Jacob, R.A. 1995. The integrated antioxidant system. Nutr. Res. 15: 755-766.
Jamal, M., Worsfold, O., McCormac, T. and Dempsey, E. 2009. A stable and selective electrochemical biosensor for the liver enzyme alanine aminotransferase (ALT). Biosens. Bioelec. 24: 2926–2930.
Jin, L.Z., Ho, Y.W., Abdullah, N., Jalaludin, S., 2000. Digestive and bacterial enzyme activities in broilers fed diets supplemented with Lactobacillus cultures. Poult. Sci. 79: 886– 891.
Joosten, H., Bidlas, E. and Garofalo, N. 2006. Salmonella detection in probiotic products. Int. J. Food Microbiol. 110: 104–107.
Kahn, R., Buse, J., Ferrannini, E. and Stern, M. 2005. The metabolic syndrome: time for a critical appraisal: joint statement from the American Diabetes Association and the European Association for the study of diabetes. Diabetes Care 28: 2289-2304.
Kajander, K., Hatakka, K., Poussa, T., Farkkila, M. and Korpela, R. 2005. A probiotic mixture alleviates symptoms in irritable bowel syndrome patients: a controlled 6- month intervention. Aliment. Pharmacol. Ther. 22: 387–394.
Kajander, K., Krogius-Kurikka, L., Rinttila, T., Karjalainen, H., Palva, A. and Korpela, R. 2007. Effects of multispecies probiotic supplementation on intestinal microbiota in irritable bowel syndrome. Aliment. Pharmacol. Ther. 26: 463-473.

Kapila S and Sinha, V.P.R. 2006. Antioxidative and hypocholesterolemic effect of L. casei ssp casei (biodefensive properties of lactobacilli). Indian J. Med. Sci. 60: 361-370.
Kawase, M., Hashimoto, H., and Hosoda, M. 2000. Effect of administration of fermented milk containing whey protein concentrate to rats and healthy men on serum lipids and blood pressure. J. Dairy Sci. 83: 255-263.
Kikuchi-Hayakawa, H., Shibahara-Sone, H., Osada, K., Onodera-Masuoka, N., Ishikawa, F., and Watanuki, M. 2000. Lower plasma triglyceride level in Syrian hamsters fed on skim milk fermented with Lactobacillus casei strain Shirota. Biosci. Biotechnol. Biochem. 64: 466–475.
Kimoto, H., Ohmomo, S. and Okamoto, T. 2002. Cholesterol removal from media by lactococci. J. Dairy Sci. 85: 3182-3188.
Klinder, A., Forster, A., Caderni, G., Femia, A.P. and Pool-Zobel, B.L. 2004. Fecal water genotoxicity is predictive of tumor-preventive activities by inulin-like oligofructoses, probiotics (Lactobacillus rhamnosus and Bifidobacterium lactis) and their synbiotic combination. Nutr. Cancer. 49: 144-155.
Koebnick. C., Wagner, I., Leitzmann, P., Stern, U. and Zunft, H.J 2003. Probiotic beverage containing L. casei shirota improves gastrointestinal symptoms in patients with chronic constipation. Can. J. Gastroenterol. 17: 655-659.
Koning, C.J., Jonkers, D.M., Stobberingh, E.E, Mulder, L., Rombouts, F.M. and Stockbrügger, R.W. 2007. The effect of a multispecies probiotic on the intestinal microbiota and bowel movements in healthy volunteers taking the antibiotic amoxycillin.Am. J. Gastroenterol. 102: 1–12

Laparra, J.M. and Sanz, Y. 2010. Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacol. Res. 61: 219–225.
Lee, D.K., Jang, S., Baek, E.H., Kim, M.J., Lee, K.S. and Shin, H.S. 2009. Lactic acid bacteria affect serum cholesterol levels, harmful fecal enzyme activity, and fecal water content. Lipids Health Dis. 8: 1-8.
Lee, M.Y., Ahn, K.S., Kwon, O.K., Kima, M.J., Kimb, M.K., Leeb, I.Y., Oh, S.R. and Lee, H.K. 2007. Anti-inflammatory and anti-allergic effects of kefir in a mouse asthma model. Immunobiology. 212: 647–654.
Limsowtin, G.K.Y., Broome, M.C. and Powell, I.B. 2003. Lactic acid bacteria, taxonomy. In H. Roginski, J. W. Fuquay, and P. F. Fox (Eds.). Encylcopedia of dairy sciences. London: Academic Press. 3: 2739–2751.
Lin, M.Y. and Yen, C.L. 1999. Antioxidative ability of lactic acid bacteria. J. Agric. Food Chem. 47: 1460 -1466.
Lin, M.Y. and Chen T.W. 2000. Reduction of cholesterol by L. acidophilus in culture broth. J. Food Drug Anal. 8: 97–102.
Liong, M.T., Dunshea, F.R. and Shah, N.P. 2007. Effects of A Synbiotic Containing Lactobacillus acidophilus ATCC 4962 on plasma lipid profiles and morphology of erythrocytes in hypercholesterolemic pigs on high- and low-fat diets. Br. J. Nutr. 98: 736-744.
Liong, M.T. and Shah, N.P. 2005. Bile salt deconjugation ability, bile salt hydrolase activity and cholesterol coprecipitation ability of lactobacilli strains. Int. Dairy J. 15: 391–398.
Lu, C.H., Hung, M.T. and Hung, P.C. 1995. Source of triglyceride accumulation in liver of rats fed a cholesterol-supplemented diet. Lipids 30: 527-531.
Lucas, A.D. and Greaves, D.R. 2001. Atherosclerosis: role of chemokines and macrophages. Expert Rev. Mol. Med. 5: 1-18.
Matsumoto, K., Takada, T., Shimizu, K., Kado, Y., Kawakami, K., Makino, I., Yamaoka, Y., Hirano, K., Nishimura, A., Kajimoto, O. and Nomoto, K. 2006. The effects of a probiotic milk product containing lactobacillus casei strain shirota on the defecation frequency and the intestinal microflora of sub-optimal health state volunteers: a randomized placebo-controlled cross-over study. Biosci. Microflora. 25: 39 - 48.
Mazahreh, A.S. and Ershidat, O.T.M. 2009. The benefits of lactic acid bacteria in yogurt on the gastrointestinal function and health. Pakistan J. Nutr. 8: 1404-1410.
McNaught, C.E. and MacFie, J. 2001. Probiotics in clinical practice: a critical review of evidence. Nutr. Res. 21: 343–353.
Millette, M., Luquet, F.M., Ruiz, M.T. and Lacroix, M. 2008. Characterization of probiotic properties of Lactobacillus strains. Dairy Sci. Technol. 88: 695–705.
Montalto, M., Curigliano, V., Santoro, L., Vastola, M., Cammarota, G., Manna, R., Gasbarrini, A. and Gasbarrini G. 2006. Management and treatment of lactose malabsorption. World J. Gastroenterol. 12: 187–191.
Montalto, M., Nucera, G., Santoro, L., Curigliano, V., Vastola, M., Covino, M., Cuoco, L., Manna, R., Gasbarrini, A. and Gasbarrini, G. 2005. Effect of exogenous beta-galactosidase in patients with lactose malabsorption and intolerance: a crossover double-blind placebo-controlled study. Eur. J. Clin. Nutr. 59: 489-493.
Morrissey, P.A. and O’Brien, N.M. 1998. Dietary antioxidants in health and disease. Int. Dairy J. 8: 463-472.
Moser, S.A. and Savage, D.C. 2001. Bile salt hydrolase activity and resistance to toxicity of conjugated bile salts are unrelated properties in lactobacilli. Appl. Environ. Microbiol. 67: 3476-3480.
Nagaraja, P., Avinash, K., Shivakumar, A., Dinesh, R. and Shrestha, A.K. 2010. Simple and sensitive method for the quantification of total bilirubin in human serum using 3-methyl-2-benzothiazolinone hydrazone hydrochloride as a chromogenic probe. Spectrochim. Acta Part A. 77: 782-786.
Nakamura, Y., Yamamoto, N., Sakai, K., Okubo, A., Yamazaki, S. and Takano, T. 1995. Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I-converting enzyme. J. Dairy Sci. 78: 1253-1257.
National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Available at: http://www.nhlbi.nih.gov.
Nguyen, T.D., Kang, J.H. and Lee, M.S. 2007. Characterization of Lactobacillus plantarum PH04, a potential probiotic bacterium with cholesterol-lowering effects. Int. J. Food Microbiol. 113: 358-361.
Noh, D.O., Kim, S.H. and Gilliland, S.E. 1997. Incorporation of cholesterol into the cellular membrane of Lactobacillus acidophilus ATCC 43121. J Dairy Sci. 80: 3107–3113.
Ohgo, H., Yokoyama, H., Hirose, H., Kawabe, H., Saito, I., Tomita, K. and Hibi, T. 2009. Significance of ALT/AST ratio for specifying subjects with metabolic syndrome in its silent stage. Diab. Metab. Synd. Clin. Res. Rev. 3: 3–6.
Ohkawa, H., Ohishi., N. and Yagi, K. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95: 351-358.
Olivares, M., Diaz-Ropero, M.A., Gomez, N., Lara-Villoslada,F., Sierra, S., Maldonado, J.A., Martin, R. and Lopez-Huertas, E. 2006 Oral administration of two probiotic strains, Lactobacillus gasseri CECT5714 and Lactobacillus coryniformis CECT5711, enhances the intestinal function of healthy adults. Int. J. Food Microbiol. 107: 104–111.
Ooi, L.G. and Liong, M.T. 2010. Cholesterol-lowering effects of probiotics and prebiotics: a review of in vivo and in vitro findings. Int. J. Mol. Sci. 11: 2499-2522.
Orrhage, K., Sillerstrom, E., Gustafsson, J.A., Nord, C.E. and Rafter, J. 1994. Binding of mutagenic heterocyclic amines by intestinal and lactic acid bacteria. Mutat. Res. 311: 239–248.
Osawa, S., Sugo, S., Yoshida, T., Yamaoka, T., Nomura, F. 2006. An assay for separating and quantifying four bilirubin fractions in untreated human serum using isocratic high-performance liquid chromatography. Clinica Chimica Acta 366 : 146 – 155
Osman, N., Adawi, D.A.S., Jeppsson, B. and Molin, G. 2007. Endotoxin-and D-galactosamine–induced liver injury improved by the administration of Lactobacillus, Bifidobacterium and blueberry. Dig. Liver Dis. 39: 849–856.
Ouwehand, A.C., Salminen, S. and Isolauri, E. 2002. Probiotics: an overview of beneficial effects. Antonie. Van. Leewenhoek. 82: 279-289.
Panesar, P.S., Kennedy, J.F., Gandhi, D.N. and Bunko, K. 2007. Bioutilisation of whey for lactic acid production. Food Chem. 105: 11-14.
Pereira, D.I.A. and Gibson, G.R. 2002. Effects of consumption of probiotics and prebiotics on serum lipids levels in humans. Crit. Rev. Biochem. Mol. Biol. 37: 259–281.
Perera, S., Lohsoonthorn, V., Jiamjarasrangsi, W., Lertmaharit, S. and Williams, M.A. 2008. Association between elevated liver enzymes and metabolic syndrome among thai adults. Diab. Metab. Synd. Clin. Res. Rev. 2: 171-178.
Prasad, K., Mantha, S.V., Kalra, J., Kapoor, R. and Kamalarajan, B.R.C. 1997. Purpurogallin in the prevention of hypercholesterolemic atherosclerosis. Int. J. Angiol. 6: 157 -166.
Reddy, G., Altaf, M., Naveena, B.J., Venkateshwar, M. and Vijay, E. 2008. Amylolytic bacterial lactic acid fermentation - a review. Biotechnol. Advances. 26: 22-34.
Rigotti, A., Trigatti, B.L., Penman, M., Rayburn, H., Herz, J. and Krieger, M. 1997. A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism. Proc. Natl. Acad. Sci. USA. 94: 12610-12615.
Roberfroid, M. 2007. Prebiotics: The concept revisted. J. Nutr. 137: 830S–837S.
Rolfe, R.D. 2000. The role of probiotic cultures in the control of gastrointestinal health. J. Nutr. 130: 396S–402S.
Rondeau, P. and Bourdon, E. 2011. The glycation of albumin: structural and functional impacts. Biochimie. 93: 645-658.
Ross, R. 1993. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 362: 801-809.
Ross, R. 1999. Atherosclerosis—an inflammatory disease. N. Engl. J. Med. 340: 115-126.
Ruel, G., Pomerleau, S., Couture, P., Lamarche, B. and Couillard, C. 2005. Changes in plasma antioxidant capacity and oxidized low-density lipoprotein levels in men after short-term cranberry juice consumption. Metabolism. 54: 856–861.
Saavedra, J.M., Bauman, N.A., Oung, I. and Perman, J.A. 1994. Feeding of Bifidobacterium bifidum and Streptococcus thermophilus to infants in hospital for prevention of diarrhea and shedding of rotavirus. Lancet. 344: 1046-1049.
Schaafsma, G., Meuling, W.J.A., van Dokkum, W. and Bouley, C. 1998. Effects of a milk product, fermented by Lactobacillus acidophilus and with fructo-oligosaccharides added, on blood lipids in male volunteers. Eur. J. Clin. Nutr. 52: 436-440.
Schley, P.D. and Field, C.J. 2002. The immune-enhancing effects of dietary fiber and prebiotics. Br. J. Nutr. 87: 221-230.
Scholz-Ahrens, K.E., Acil, Y. and Schrezenmeir, J. 2002. Effect of oligofructose or dietary calcium on repeated calcium and phosphorus balances, bone mineralization and trabecular structure in ovariectomized rats. Br. J. Nutr. 88: 365-377.
Schwenke, D.C. 1998. Antioxidants and atherogenesis. J. Nutr. Biochem. 9: 424–445.
Scuteri, A., Najjar, S., Morrell, C. and Lakatta, E. 2005. The metabolic syncrome in older individuals: prevalence and prediction of cardiovascular events. Diabetes Care. 28: 882–887.
Settanni, L. and Corsetti, A. 2008. Application of bacteriocins in vegetable food biopreservation. Int. J. Food Microbiol. 121: 123-138.
Shinohara, K., Ohashi, Y., Kawasumi, K., Terada, A. and Fujisawa, T. 2010. Effect of apple intake on fecal microbiota and metabolites in humans. Anaerobe 16: 510-515.
Sindhu, S.C. and Khaterpaul, N. 2003. Effect of feeding probiotic fermented indigenous food mixture on serum cholesterol levels in mice. Nutr. Res. 23: 1071-1080.
Tamai, Y., Yoshimitsu, N., Watanabe, Y., Kuwabara. Y. and Nagai, S. 1996. Effects of milk fermented by culturing with various lactic acid bacteria and a yeast on serum cholesterol level in rats. J. Ferment. Bioeng. 81: 181-182.
Taranto, M.P., Medici, M., Perdigon, G., Ruiz Holgado, A.P. and Valdez ,G.F. 1998. Evidence for hypocholesterolemic effect of Lactobacillus reuteri in hypercholesterolemic mice. J. Dairy Sci. 81: 2336-2340.
Timmerman, H.M., Koning, C.J.M., Mulder, L., Romboutsd, F.M. and Beynen, A.C. 2004. Monostrain, multistrain and multispecies probiotics- A comparison of functionality and efficacy. Int. J. Food Microbial. 96: 219-233
Trautwein, E.A., Rieckhoff, D. and Erbersdobler, H.F. 1998. Dietary inulin lowers plasma cholesterol and triacylglycerol and alters biliary bile acid profile in hamsters. J. Nutr. 128: 1937-1943.
Tsai, J.S., Chen, T.J., Pan, B.S., Gong, S.D. and Chung, M.Y. 2008. Antihypertensive effect of bioactive peptides produced by protease-facilitated lactic acid fermentation of milk. Food Chem. 106: 552–558.
Upadhyay, R. and Kumar, A. 2008. Clinical benefits of manipulating the gut flora. Medicine. 18: 258-262.
Urso, M.L. and Clarkson, P.M. 2003. Oxidative stress, exercise, and antioxidant supplementation. Toxicol. 189: 41- 54.
Usman, H.A. 2000. Effect of administration of Lactobacillus gasseri on serum lipids and fecal steroids in hypercholesterolemic rats. J. Dairy Sci. 83: 1705-1711.
Valko, M., Izakovic, M., Mazur, M., Rhodes, C. J. and Telser, J. 2004. Role of oxygen radicals in DNA damage and cancer incidence. Mol. Cell. Biochem. 266: 37–56.
Vesa, T.H., Marteau, P. and Korpela, R. 2000. Lactose intolerance. J Am. Coll. Nutr. 19: 165S-175S.
Vorchheimer, D. and Becker, R. 2006. Platelets in atherothrombosis. Mayo Clin. Proc. 81: 59–68.
Wang, Y., Xu, N., Xi, A., Ahmed, Z., Zhang, B. and Bai, X. 2009. Effects of Lactobacillus plantarum MA2 isolated from Tibet kefir on lipid metabolism and intestinal microflora of rats fed on high-cholesterol diet. Appl. Microbiol. Biotechnol. 84: 341–347.
WHO. Cardiovascular Disease; Fact sheet, Geneva, Switzerland, September, 2009. Available at: http://www.who.int/ mediacentre/ factsheets/fs317/en/print.html (accessed on 19 May 2010).
Woo, M.N., Bok, S.H. and Choi, M.S. 2009. Hypolipidemic and body fat-lowering effects of fatclean in rats fed a high-fat diet. Food Chem. Toxicol. 47: 2076–2082.
Wu, C., Yang, G., Bermudez-Humaran, L.G., Pang, Q., Zeng, Y., Wang, J. and Gao, X. 2006. Immunomodulatory effects of IL-12 secreted by Lactococcus lactis on Th1/Th2 balance in ovalbumin (OVA)-induced asthma model mice. Int. Immunopharmacol. 6: 610–615.
Xing, H.C., Li, L.J., Xu, K.J., Shen, T., Chen, Y.B., Sheng, J.F., Chen, Y., Fu, S.Z., Chen, C.L., Wang, J.G., Yan, D., Dai, F.W. and Zheng, S.S. 2006. Protective role of supplement with foreign Bifidobacterium and Lactobacillus in experimental hepatic ischemia–reperfusion injury. J. Gastroenterol. Hepatol. 21: 647–656.
Yagi, K. 1998. Simple assay for the level of total lipid peroxides in serum or plasma. Methods in Molecular Biology. 108: 101–106.
Yamamoto, N., Maeno, M. and Takano, T. 1999. Purification and characterization of an antihypertensive peptide from a yogurt-like product fermented by Lactobacillus helveticus CPN4. J. Dairy Sci. 82: 1388–1393.
Zoppi, G., Cinquetti, M., Benini, A., Bonamini, E. and Minelli, E.B. 2001. Modulation of the intestinal ecosystem by probiotics and lactulose in children during treatment with ceftriaxone. Curr. Ther. Res. 62: 418– 435.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top