(3.235.11.178) 您好!臺灣時間:2021/03/05 16:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉宛綺
研究生(外文):Wan-Chi Yeh
論文名稱:生質廢棄物回收轉化生質酒精之最佳水解條件研究
論文名稱(外文):The Optimal Hydrolysis Conditions for the Conversion of Waste Biomass to Bioethanol
指導教授:陳志成陳志成引用關係
指導教授(外文):Jyh-Cheng Chen
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:169
中文關鍵詞:木質纖維生質酒精微波水解主成份分析田口式直交表反應曲面法
外文關鍵詞:lignocellulosebioethanolmicrowave hydrolysisprincipalcomponent analysis (PCA)orthogonal arrayresponse surface method
相關次數:
  • 被引用被引用:1
  • 點閱點閱:382
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著全球環境氣候變遷與能源短缺問題日益嚴重,再生能源的發展持續受到世界各國與產官學各界之重視,其中木質纖維轉化生質酒精即為最具發展潛力之再生能源之一。由於如何有效將木質纖維物水解轉化成還原糖為產製生質酒精之關鍵步驟,本研究室曾針對多種木質纖維物運用微波水解技術進行生質物之轉化發酵實驗,為有效釐清各種操作條件對纖維物微波水解效率之影響,本研究將過去實驗室所有微波水解條件與實驗數據 (共132組) 進行主成份分析 (Principal Component Analysis, PCA) ,分析主要影響因子,並進一步應用田口式直交表及反應曲面法最佳化實驗設計方法探討木質纖維之最佳水解條件。

主成份分析結果顯示,影響不同生質廢棄物微波水解效率之主要因素有三,第一主要成份為還原糖及水解率,微波水解率直接受還原糖產量的影響;第二成份為微波溫度,微波溫度改變可提供不同破壞能量,對於水解破壞纖維素的能力將有所影響,進而影響還原糖產量;第三成份則為酸種類及酸濃度,不同酸對纖維素之化學反應能力與鍵結親和能力不同,導致水解效率不同。在最佳化實驗設計當中,田口式直交表分析結果顯示最佳水解條件為以牛筋草為基質、5% 硫酸、110℃ 微波溫度、以及30分鐘微波時間,其最佳水解率可達106.67%。進一步以反應曲面法縮小操作條件範圍,求取最佳參數值,分析結果顯示最佳水解操作參數為2.77% 硫酸、117℃ 微波溫度、以及37分鐘微波時間,最佳化驗證實驗結果顯示其最佳水解率可達118.25%,還原糖產量18.62 g/L。以HPLC-UV進行水解產物分析發現,主要產物含量分別為糠醛0.06 g/L、HMF 0.05 g/L、乙醯丙酸2.79 g/L及甲酸0.09 g/L。

將最佳水解條件所得水解液應用不同菌種組合進行酒精發酵實驗,發酵條件控制在恆溫30℃及pH 5.0,結果發現經28小時發酵後即可產生最大酒精濃度2114.34 mg/L,應用六碳糖發酵菌Saccharomyces cerevisiae可產生最高酒精產率,每克牛筋草約可產生95 mg酒精,發酵率可達 80.22%。

With the shortage of traditional fossil fuels and global climate change worsening, the development of sustainable and renewable energy is highly emphasized by the industry, government and academia of many countries. Among the renewable energy, the conversion of lignocellulose into bioethanol is believed to have the most potential. Due to the hydrolysis of lignocellulosic materials into reducing saccharides is the bottleneck of producing bioethanol, it is important to clarify the influences of different operating parameters on the hydrolysis efficiency of lignocellulosic materials. Our laboratory has studied the microwave hydrolysis and fermentation of various lignocellulosic materials. In this study, all of the previous experimental conditions and results (132 data) are evaluated by the Principal Component Analysis (PCA) to find the major influences. Then the orthogonal array of Taguchi method and response surface method are applied to optimize the experimental conditions and parameters for the microwave hydrolysis of lignocellulose.

The results of Principal Component Analysis show that there are three major components influence the microwave hydrolysis of waste biomass. The first major component is hydrolysis efficiency and reducing sugar. The second major component is microwave temperature. Different microwave temperatures provide different microwave energy for the destruction of cellulose. The third major component is the type and concentration of acid reagent. Different chemical reagents have different reaction ability and affinity with the celluloses. The results of Taguchi orthogonal array shows that the optimum hydrolysis efficiency and conditions are 106.67%, Goosegrass as substrate, with 5% H2SO4, and microwave 110℃ for 30 min. With the response surface method, the optimal parameters are narrowed down. The optimum hydrolysis conditions are Goosegrass, with 2.77% H2SO4 and microwave 117℃ for 37 min. At such conditions, the hydrolysis efficiency and reducing sugar were 118.25% and 18.62 g/L, respectively. The byproducts of lignocellulose hydrolysis are also analyzed and the concentrations are furfural 0.06 g/L, HMF 0.05 g/L, levulinic acid 2.79 g/L and formic acid 0.09 g/L.

The hydrolysate at optimal hydrolysis conditions are further fermented with different yeasts. The fermentation temperature is 30℃ and pH is 5.0. The results show the hexose yeast, Saccharomyces cerevisiae, can produce the maximum ethanol concentration 2114.34 mg/L and ethanol yield 95 mg/g. The fermentation efficiency is 80.22%.

誌 謝 I
摘 要 II
Abstract IV
目 錄 VI
表目錄 X
圖目錄 XIII
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 3
第二章 文獻回顧 5
2-1 生質能源 5
2-2 生質酒精發展現況 8
2-2-1 國外生質酒精發展現況 8
2-2-2 國內生質酒精發展現況 11
2-3 生質酒精 12
2-3-1 生質酒精製造流程 12
2-3-2 木質纖維素組成 13
2-3-3 醣及還原糖 16
2-4 木質纖維水解 18
2-4-1 木質纖維素水解技術 18
2-4-2 酸水解機制及副產物 27
2-4-3 水解技術瓶頸 29
2-5 各種生質酒精之產率比較 31
2-6 酒精發酵 35
2-6-1 酵母菌簡介 35
2-6-2 酒精發酵製程 37
2-7 微波反應技術 40
2-7-1 微波加熱原理 40
2-7-2 微波加熱與傳統加熱法之比較 41
2-8 文獻總結 43
第三章 研究方法與材料 44
3-1 研究流程 44
3-2 主成份影響因子分析 46
3-3 田口式直交表最佳化分析方法 49
3-3-1 田口式基本原理 49
3-3-2 信號雜訊比(S/N) 52
3-3-3 直交表 54
3-3-4 田口式分析方法 56
3-4 反應曲面法最佳化分析方法 58
3-4-1 反應曲面法原理 58
3-4-2 反應曲面法分析方法 66
3-5 實驗方法 71
3-5-1 原料前處理 71
3-5-2 生質廢棄物原料分析 71
3-5-3 微波水解試驗 74
3-5-4 DNS還原糖測定 74
3-5-5 發酵試驗 77
3-5-6 酒精產量計算方式 80
3-6 材料與化學藥品 81
3-6-1 生質廢棄物原料 81
3-6-2 發酵菌 82
3-6-3 化學藥品 83
3-7 儀器設備 85
3-7-1 水解發酵產物與副產物分析儀器 86
3-7-2 13C NMR 固態核磁共振光譜儀 90
第四章 結果與討論 93
4-1 主成份分析 93
4-1-1 木屑微波水解因素分析 94
4-1-2 竹子微波水解因素分析 96
4-1-3 稻草微波水解因素分析 98
4-1-4 落葉微波水解因素分析 100
4-1-5 四種基質微波水解因素分析 102
4-2 田口式直交表 106
4-3 反應曲面法 110
4-4 水解副產物分析結果 123
4-5 13C NMR 分析結果 126
4-6 FE-SEM分析結果 128
4-7 發酵之酒精產率 131
第五章 結論 137
第六章 建議 139
參考文獻 140
附 錄 156
Adler, E., 1977, “Lignin chemistry-past, present and future,” Wood Science and Technology, Vol. 11, No. 3, pp. 169-218.

Aguilar, R., Ramírez, J.A., Garrote, G. and Vázquez, M., 2002, “Kinetic study of the acid hydrolysis of sugar cane bagasse,” Journal of Food Engineering, Vol. 55, No. 4, pp. 309-318.

Alexander, A.G., 1985, “The energy cane alternative,” Sugar Series, Vol. 6, Elsevier, Amsterdam.

Balat, M., 2011, “Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review,” Energy Conversion and Management, Vol. 52, No. 2, pp. 858-875.

Ballesteros, M., Oliva, J.M., Negro, M.J., Manzanares, P. and Ballesteros, I., 2004, “Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875,” Process Biochemistry, Vol. 39, No. 12, pp. 1843-1848.

Béguin, P., Millet, J. and Aubert, J.P., 1987, “The cloned cel (cellulose degradation) genes of Clostridium thermocellum and their products,” Microbiological Sciences, Vol. 4, No. 9, pp. 277-280.

Beltrame, P.L., Carniti, P. and Visciglio, A., 1992, “Fractionation and bioconversion of steam-exploded wheat straw,” Bioresource Technology, Vol. 39, No. 2, pp. 165-171.

Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S. and Escaleira, L.A., 2008, “Response surface methodology (RSM) as a tool for optimization in analytical chemistry,” Talanta, Vol. 76, No. 5, pp. 965-977.

Boulton, R.B., Singleton, V.L., Bisson, L.F., and Kundee, R.E., 1996, “Principles and practices of winemaking,” Champman & Hall, New York.

Canettieri, E.V., Rocha, G.J.d.M., de Carvalho Jr., J.A. and de Almeida e Silva, J.B., 2007, “Optimization of acid hydrolysis from the hemicellulosic fraction of Eucalyptus grandis residue using response surface methodology,” Bioresource Technology, Vol. 98, No. 2, pp. 422-428.

Chandel, A.K., Kapoor, R.K., Singh, A. and Kuhad, R.C., 2007, “Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501,” Bioresource Technology, Vol. 98, No. 10, pp. 1947-1950.

Chen, W.P. and Anderson, A.W., 1980, “Extraction of hemicellulose ryegrass straw for the production of glucose isomerase and the use of the resulting straw residue for animal feed,” Biotechnology and Bioengineering, Vol. 22, No. 3, pp. 519-531.

Clemente-Jimenez, J.M., Mingorance-Cazorla, L., Martínez-Rodríguez, S., Las Heras-Vázquez, F.J. and Rodríguez-Vico, F., 2005, “Influence of sequential yeast mixtures on wine fermentation,” International Journal of Food Microbiology, Vol. 98, No. 3, pp. 301-308.

Coppola, F., Bastianoni, S. and Østergård, H., 2009, “Sustainability of bioethanol production from wheat with recycled residues as evaluated by Emergy assessment,” Biomass and Bioenergy, Vol. 33, No. 11, pp. 1626-1642.

Demirbas, A., 2005, “Bioethanol from cellulosic materials: A renewable motor fuel from biomass,” Energy Source, Vol.27, No. 4, pp. 327-337.

Dent, D.F., 1980, “Mechanism of fermentation of brewing yeast in high salt concentration,” Journal of the Chinese Agricultural Chemical Society, Vol. 14, pp. 112-115.

Draper, N.R. and John, J.A., 1988, “Response-surface designs for quantitative and qualitative variables,” Technometrics, Vol. 30, No. 4, pp. 423-428.

Fan, L.T., Gharpuray, M.M. and Lee, Y.H., 1987, “Cellulose hydrolysis,” Biotechnology Monographs, Vol. 3, Springer Verlag, Berlin.

Gaden, E.L.Jr., 1987, “Cellulose hydrolysis,” Springer Verlag, Berlin.

Garrote, G., Domínguez, H. and Parajó, J.C., 1999, “Hydrothermal processing of lignocellulosic materials,” Holz als Roh-und Werkstoff, Vol. 57, No. 3, pp. 191-202.

Gupta, R., Sharma, K.K., Kuhad, R.C., 2009, “Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498,” Bioresource Technology, Vol. 100, No. 3, pp. 1214-1220.

Hartemink A.E., 2008, “Chapter 3 Sugarcane for Bioethanol: Soil and Environmental Issues,” Advances in Agronomy, Vol. 99, pp. 125-182.

Hsu, T.A., Ladisch, M.R. and Tsao, G.T., 1980, “Alcohol from cellulose,” Chemical Technology, Vol. 10, No. 5, pp. 315-319.

Huang, C.F., Lin, T.H., Guo, G.L. and Hwang, W.S., 2009, “Enhanced ethanol production by fermentation of rice straw hydrolysate without detoxification using a newly adapted strain of Pichia stipitis,” Bioresource Technology, Vol. 100, No. 17, pp. 3914-3920.

Hughes, A. and Lindsay, R.C., 1985, “Liquid chromatographic analysis of sugars and mannitol in cabbage and fermenting sauerkraut,” Journal of Food Science, Vol. 50, pp. 1662-1667.

IEA, 2009, “Medium term oil-market report,” International Energy Agency, IEA/OECD, Paris, pp. 120.

Jones, D.A., Lelyveld, T.P., Mavrofidis, S.D., Kingman, S.W. and Miles, N.J., 2002, “Microwave heating applications in environmental engineering-a review,” Resources, Conservation and Recycling, Vol. 34, No. 2, pp. 75-90.

Karimi, K., Kheradmandinia, S. and Taherzadeh, M.J., 2006, “Conversion of rice straw to sugars by dilute-acid hydrolysis,” Biomass and Bioenergy, Vol. 30, No. 3, pp. 247-253.

Kaur, P.P., Arneja, J.S. and Singh, J., 1998, “Enzymic Hydrolysis of Rice Straw by Crude Cellulase from Trichoderma reesei,” Bioresource Technology, Vol. 66, No. 3, pp. 267-269.

Kim, H.Y., Lee, J.W., Jeffries, T.W. and Choi, I.G., 2011, “Response surface optimization of oxalic acid pretreatment of yellow poplar (Liriodendron tulipifera) for production of glucose and xylose monosaccarides,” Bioresource Technology, Vol. 102, No. 2, pp. 1440-1446.

Klemm, D., Schmauder, H.P. and Heinze, T., 1998, “Biopolymers: Polysaccharides II,” Wiley-Vch, pp. 275-319.

Koike, Y., An, M.Z., Tang, Y.Q., Syo, T., Osaka, N., Morimura, S. and Kida, K., 2009, “Production of fuel ethanol and methane from garbage by high-efficiency two-stage fermentation process,” Journal of Bioscience and Bioengineering, Vol. 108, No. 6, pp. 508-512.


Kuhad, R.C., Gupta, R., Khasa, Y.P. and Singh, A., 2010, “Bioethanol production from Lantana camara (red sage): Pretreatment, saccharification and fermentation,” Bioresource Technology, Vol. 101, No. 21, pp. 8348-8354.

Lee, J.W., Rodrigues, R.C.L.B. and Jeffries, T.W., 2009, “Simultaneous saccharification and ethanol fermentation of oxalic acid pretreated corncob assessed with response surface methodology,” Bioresource Technology, Vol. 100, No. 24, pp. 6307-6311.

Linde, M., Jakobsson, E.L., Galbe, M., and Zacch, G., 2008, “Steam pretreatment of dilute H2SO4-impregnated wheat straw and SSF with low yeast and enzyme loadings for bioethanol production,” Biomass and Bioenergy, Vol. 32, No. 4, pp. 326-332.

Malm, E., Bulone, V., Wickholm, K., Larsson, P.T. and Iversen, T., 2010, “The surface structure of well-ordered native cellulose fibrils in contact with water,” Carbohydrate Research, Vol. 345, No. 1, pp. 97-100.

Miller, G.L., 1959, “Use of dinitrosalicylic acid reagent for determination of reducing sugars,” Analytical Chemistry, Vol. 31, No. 3, pp. 426-428.

Monavari, S., Galbe, M. and Zacchi, G., 2009, “Impact of impregnation time and chip size on sugar yield in pretreatment of softwood for ethanol production,” Bioresource Technology, Vol. 100, No. 24, pp. 6312-6316.

Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M. and Ladisch, M., 2005, “Features of promising technologies for pretreatment of lignocellulosic biomass,” Bioresource Technology, Vol. 96, No. 6, pp. 673-686.

Mu, Y., Zheng, X.J. and Yu, H.Q., 2009, “Determining optimum conditions for hydrogen production from glucose by an anaerobic culture using response surface methodology (RSM),” International Journal of Hydrogen Energy, Vol. 34, No. 19, pp. 7959-7963.

Oberoi, H.S., Vadlani, P.V., Brijwani, K., Bhargav, V.K. and Patil, R.T., 2010, “Enhanced ethanol production via fermentation of rice straw with hydrolysate-adapted Candida tropicalis ATCC 13803,” Process Biochemistry, Vol. 45, No. 8, pp. 1299-1306.

Öhgren, K., Vehmaanperä, J., Siika-Aho, M., Galbe, M., Viikari, L. and Zacchi, G., 2007, “High temperature enzymatic prehydrolysis prior to simultaneous saccharification and fermentation of steam pretreated corn stover for ethanol production,” Enzyme and Microbial Technology, Vol. 40, No. 4, pp. 607-613.

Palmqvist, E. and Hahn-Hägerdal, B., 2000, “Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition,” Bioresource Technology, Vol. 74, No. 1, pp. 25-33.

Pu, Y., Ziemer, C. and Ragauskas, A.J., 2006, “CP/MAS 13C NMR analysis of cellulase treated bleached softwood kraft pulp,” Carbohydrate Research, Vol. 341, No. 5, pp. 591-597.

Rahman, S.H.A., Choudhury, J.P., Ahmad, A.L. and Kamaruddin, A.H., 2007, “Optimization studies on acid hydrolysis of oil palm empty fruit bunch fiber for production of xylose,” Bioresource Technology, Vol. 98, No. 3, pp. 554-559.

Roberto, I.C., Mussatto, S.I. and Rodrigues, R.C.L.B., 2003, “Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor,” Industrial Crops and Products, Vol. 17, No. 3, pp. 171-176.

Saha, B.C. and Cotta, M.A., 2007, “Enzymatic saccharification and fermentation of alkaline peroxide pretreated rice hulls to ethanol,” Enzyme and Microbial Technology, Vol. 41, No. 4, pp. 528-532.

Sannigrahi, P., Miller, S.J. and Ragauskas A.J., 2010, “Effects of organosolv pretreatment and enzymatic hydrolysis on cellulose structure and crystallinity in Loblolly pine,” Carbohydrate Research, Vol. 345, No. 7, pp. 965-970.

Sharma, S.K., Kalra, K.L. and Kocher, G.S., 2004, “Fermentation of enzymatic hydrolysate of sunflower hulls for ethanol production and its scale-up,” Biomass and Bioenergy, Vol. 27, No. 4, pp. 399-402.

Shimokawa, T., Ishida, M., Yoshida, S. and Nojiri, M., 2009, “Effects of growth stage on enzymatic saccharification and simultaneous saccharification and fermentation of bamboo shoots for bioethanol production,” Bioresource Technology, Vol. 100, No. 24, pp. 6651-6654.

Silverstein, R.A., Chen, Y., Sharma-Shivappa, R.R., Boyette, M.D. and Osborne, J., 2007, “A comparison of chemical pretreatment methods for improving saccharification of cotton stalks,” Bioresource Technology, Vol. 98, No. 16, pp. 3000-3011.

Sims, R.E.H., Mabee, W., Saddler, J.N. and Taylor, M., 2010, “An overview of second generation biofuel technologies,” Bioresource Technology, Vol. 101, No. 6, pp. 1570-1580.

Sreenath, H.K., Koegel, R.G., Moldes, A.B., Jeffries, T.W. and Straub, R.J., 2001, “Ethanol production from alfalfa fiber fractions by saccharification and fermentation,” Process Biochemistry, Vol. 36, No. 12, pp. 1199-1204.

Sun, Y. and Cheng, J.J., 2005, “Dilute acid pretreatment of rye straw and bermudagrass for ethanol production,” Bioresource Technology, Vol. 96, No. 14, pp. 1599-1606.

Sun, Y. and Cheng, J.Y., 2002, “Hydrolysis of lignocelluloses materials for ethanol production: A review,” Bioresource Technology, Vol. 83, No. 1, pp. 1-11.

Taherzadeh, M.J. and Karimi, K., 2007, “Acid-based hydrolysis processes for ethanol from lignocellulosic materials: A review,” BioResources, Vol. 2, No. 3, pp. 472-499.

Telli-Okur, M. and Eken-Saraçoǧlu, N., 2008, “Fermentation of sunflower seed hull hydrolysate to ethanol by Pichia stipitis,” Bioresource Technology, Vol. 99, No. 7, pp. 2162-2169.

United State Department of Agriculture, 2006, “The economic feasibility of ethanol production from sugar in the united states,” USDA.

Wise, L.E., Murphy, M. and D’Addieco, A.A., 1946, “Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses,” Paper Trade Journal, Vol. 122, No. 2, pp. 35-43.

Yang, K., Yu, Y. and Hwang, S., 2003, “Selective optimization in thermophilic acidogenesis of cheese-whey wastewater to acetate and butyrate acids: partial acidification and methanation,” Water Research, Vol. 37, No. 10, pp. 2467-2477.

Zhu, S., Wu, Y., Yu, Z., Zhang, X., Wang, C., Yu, F. and Jin, S., 2006, “Production of ethanol from microwave-assisted alkali pretreated wheat straw,” Process Biochemistry Vol. 41, No. 4, pp. 869-873.

王智薇,2008,「淺談新興能源科技產業-氫能與燃料電池」,華銀徵信產經研究部。

左峻德,2006,「發展能源作物內部經濟效益分析科技計畫」,農委會農糧署九十五年度科技計畫研究報告,財團法人台灣經濟研究院,第十二月。

何榮進,2006,「主成份分析運用於環境因子與交通安全關係之研究」,碩士論文, 立德管理學院資源環境研究所,臺南。

吳耿東,2008,「認識生質能源」,物理雙月刊,第30卷,第4期,第377-388頁。

李偉嘉、鄭欽龍,2009,「利用木竹材生產生質酒精之成本效益分析」,全球變遷通訊雜誌,第61期,第六月。

李輝煌,2004,「田口方法-品質設計的原理與實務」,高立圖書有限公司,臺北。

周柏伸,2006,「利用酸前處理提高纖維酵素水解蔗渣效率之研究」,碩士論文,國立台灣大學生物產業機電工程學研究所,臺北。

林世宗,2001,「廢水中化學需氧量偵測方法之改進-無汞式微波消化法」,碩士論文(I),淡江大學水環所,臺北。

林志杰,2007,「應用反應曲面法探討有機豆奶布丁之最適配方」,碩士論文,國立中興大學食品暨應用生物科技學系,臺中。

林姍姍、何宗仁,2008,「木質纖維素前處理技術研究進展」,化工資訊與商情,第58期,第四月,第18-27頁。

林哲毅、謝清祥,2009,「能源草種之未來展望」,經濟部能源局能源報導,第十二月,第26-28頁。

林震岩,2008,「多變量分析SPSS的操作與應用」,智勝文化事業有限公司,第367頁,臺北。

邱永添,1998,「筊白筍殼國畫紙之製造」,碩士論文,國立中興大學森林學研究所,臺中。

邱皓政,2009,「量化研究與統計分析-SPSS中文視窗版資料分析範例解析」,五南圖書出版股份有限公司,第17-19頁,臺北。

侯詠德,2006,「龍鬚菜之酵素降解」,碩士論文,國立台灣大學生物產業機電工程學研究所,臺北。

洪永杰、許博爾,2005,「纖維素轉換生質酒精技術專利檢索與分析報告」,元智大學最佳化實驗設計室,桃園。

陳文恆、郭家倫、黃文松、王嘉寶,2007,「纖維酒精技術之發展,農業生技產業季刊」,植物種苗生技,第九期,第62-69頁。

陳孝宇,2006,「發展生質柴油和生質酒精對台灣農業部門之影響分析」,碩士論文,國立台灣大學農業經濟學研究所,臺北。

陳芃,2008 (a),「二代生質技術上路-以纖維素產製生質燃料」,經濟部能源局能源報導,第五月。

陳威廷,2004,「纖維素水解菌之培養策略與纖維素水解酵素之鑑定」,碩士論文,國立成功大學化學工程研究所,臺南。

郭建鑠,2008,「應用微波水解技術提升纖維廢棄物能源化效率之研究」,碩士論文,弘光科技大學環境工程研究所,臺中。

陳婷玟,2001,「以筊白筍殼半纖維素為碳源生產Trichoderma longibrachiatum 185聚木糖酶及其在低聚木糖製備上之應用」,碩士論文,國立中興大學食品科學系,臺中。

陳綠蔚,2008 (b),「高油價下全球油品及生質能源供需展望」,經濟部能源局能源報導,第一月。

陳廣文,2007,「滑鼠底座之最佳化設計與製程研究」,碩士論文,國立台北科技大學機電整合研究所,臺北。

黃文宣,2002,「微波定量木材熱水抽出物及 Klason 木質素法之初探」,碩士論文,國立中興大學森林學系碩士班,臺中。

黃式揚,1999,「以開放式聚焦微波消化法配合分光光度計偵測廢水中化學需氧量之研究」,碩士論文,淡江大學水環所,臺北。

黃啟裕,2008 (a),「纖維素產氫技術在生質能源之發展,農業生技產業季刊」,植物種苗生技,第13期,第54-60頁。

黃繼輝,2008 (b),「應用田口法於五軸CNC銑削加工製程之最佳化參數設計」,碩士論文,國立台北科技大學製造科技研究所,臺北。

經濟部能源局,2009,http://www.moeaboe.gov.tw/news/newsdetail.aspx?no=03&serno=00832 [2010.09.03]

經濟部能源局,2010,「能源產業技術白皮書」。

董啟功,2007,「中研院南部生物技術計畫中心生質轉化研究簡介」,中央研究院週報,第1137期,第4-5頁。

熊宗貴,1995,「發酵工藝原理」,中國醫藥科技出版社,北京。

趙國評、邱喚文,2007,「淺談生質酒精」,林業研究專訊,第14卷,第三期,第14-17頁。

鄭清元,2007,「預先微波PAC對玻璃研磨廢水混凝處理影響之研究」,碩士論文,國立雲林科技大學環境與安全衛生工程系碩士班,雲林。

謝宗甫,2007,「 焚化飛灰以微波消化處理鉛重金屬溶出削減特性之研究」,碩士論文,國立台北科技大學環境規劃與管理研究所,臺北。

謝誌鴻、吳文騰,2009,「微藻-綠色生質能源」,科學發展,第433期,第36-40頁。

蘇美惠、左峻德、王嘉寶、黃文松,2008,「稻稈纖維酒精之發展潛力」,經濟部能源局能源報導,第十二月。

蘇朝墩,2002,「品質工程」,中華民國品質學會。

蘇聖凱,2005,「反應曲面法在複雜網路上的應用」,碩士論文,國立中央大學統計研究所,桃園。

續光清,1992,「食品化學」,財團法人徐氏基金會。


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔