(3.236.222.124) 您好!臺灣時間:2021/05/11 09:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林玉仁
論文名稱:生質廢棄物焙燒特性與能源化效率之研究
論文名稱(外文):Torrefaction Characteristics and Energy Efficiency of Biomass Waste
指導教授:陳志成陳志成引用關係
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
畢業學年度:99
語文別:中文
論文頁數:111
中文關鍵詞:焙燒生質能生質廢棄物熱重分析
外文關鍵詞:torrefactionbioenergybiomass wastethermal gravimetric analysis (TGA)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1338
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
生質能源的應用主要是將生質廢棄物經過碳化、焙燒或熱解後,分別產生固體(垃圾衍生燃料)、氣體(氣化技術)、液體(熱裂解)等生質燃料。未經處理的生質廢棄物中含有較高水分與雜質,其濕基低位發熱量約為1500~2500(kcal/kg),較一般燃料低,因此需要使用不同前處理技術來提升其熱值。焙燒為近年發展之廢棄物能源化技術之一,其處理主要目的是將所含雜質燒除提升碳含量,去除水分,降低含水量,藉以提升生質燃料熱值。為瞭解不同生質物經過焙燒後之能源效益以及不同操作條件之影響。本研究選用四種常見的生質物,並應用田口式直交表探討不同操作條件之影響以及最佳參數。
研究結果顯示,四種生質廢棄物在未經焙燒處理之三成分中,水分含量以竹子最高 (51.67%),灰分含量以稻草最高 (19.38%),可燃分含量則以瓦楞紙最高 (85.99%)。而經焙燒技術處理過後的生質物,可燃分、熱值、碳含量大幅提升,主要原因為生質物經焙燒後水分與雜質完全去除所致。四種生質物焙燒後以竹子之可燃分含量與熱值提升最多,從焙燒前之47.06% 提升至焙燒後的98.28%;經過300℃、1小時焙燒後,竹子熱值從焙燒前之1525.79kcal/kg 提升至焙燒後的6104.24 kcal/kg,單位熱值增加4578.45 kcal/kg,相當於提升4倍。元素碳含量以木屑增加幅度最高,由焙燒前之 41.03%提升至焙燒後的75.24%,其次為竹子,由焙燒前之 47.07%提升至焙燒後的74.63%。生質物焙燒後熱值之影響程度,依序為焙燒生質物、焙燒時間、焙燒溫度,最佳焙燒生質物為竹子、最佳焙燒溫度為400℃、最佳焙燒時間為3小時,最佳熱值可達5948.54kcal/kg,其熱值與一般煤炭相當。分析結果顯示影響生質物焙燒前熱值之主要相關參數為濕基可燃分、水分、半纖維素、木質素﹔而影響生質物焙燒後熱值之主要相關參數為碳含量、可燃分、灰分。
不同生質物之熱重分析結果顯示,木屑、竹子、稻草之主要熱分解溫度為300℃,瓦楞紙在380℃時被分解,此結果發現瓦楞紙需要較高溫才會被分解。由DTG曲線可得知四種生質物皆有三次熱裂解點,第一次的裂解溫度約為50℃左右,為乾燥過程去除水分和一些揮發性物質釋放,第二次的裂解溫度約為300℃左右,為纖維素分解,第三次的裂解溫度約為400℃左右,為木質素分解。

The application of biomass energy is to produce solid (refuse derived fuel, RDF), gas (gasification) and liquid (thermal pyrolysis) biofuels throught the carbonization, torrefaction, and pyrolysis processes. In generally, raw biomass wastes contain higher moisture and impurities, lower calorific value 1500-2500 kcal/kg than normal fuels. Different pre-treatment technologies are necessary to enhance their calorific values. Torrefaction is one of the new developed technologies for waste to energy recently, which can remove impurities and moisture to increase the carbon content and calorific value of biofules. To figure out the energy efficiency of different biomass through torrefaction and the effects of different operating conditions, four common biomass materials are chosen for torrefation and Taguchi orthogonal array method is applied to evaluate the effects of different operating conditions and the optimal parameters.
Experimental results show that bamboo has the highest moisture content (51.67%), straw has the highest ash content (19.38%) and corrugated paper has the highest combustible content (85.99%) among the four biomass materials (without torrefaction). The combustible content, calorific value and carbon content of biomass are much improved by torrefaction process, due to the significant reduces of moisture and impurities. Bamboo has the highest incireses of combustible content and calorific value after 300℃ and 1 hour torrefaction; the combustible content is increased from 47.06% to 98.28% and the calorific value is incressed from 1525.79 kcal/kg to 6104.24 kcal/kg. The specific calorific value of bamboo increases 4578.45 kcal/kg (i.e. about 4 times) after torrefaction. Wood chips have the highest increase rate of carbon content after torrefaction, from 41.03% to 75.24%, and the next is bamboo, increased from 47.07% to 74.63%. The calorific value of biomass is influenced by different parameters with the order of biomass species, torrefaction time and torrefaction temperature. The best biomass for torrefaction is bamboo, the optimum torrefaction temperature is 400℃, and the optimum torrefaction time is 3 hours, which can achieve the highest calorific value of 5948.54 kcal/kg and similar with common coal fuels. The results of characteristics analysis show that the calorific value of biomass (before torrefaction) is majorly influenced by the contents of combustible, moisture, semi-cellulose, and lignin; while the calorific value of biofuel (after torrefaction) is much related to the contents of ash, lignin and carbon.
The TGA results of different biomass show that the major decomposition temperature of wood, bamboo, straw are 300℃, and that of corrugated paper is 380℃. The result indicates that higher temperature is required to decompose corrugated paper. The DTG curves illustrate the four biomass all have three pyrolysis points. The first pyrolysis temperature is about 50℃ for moisture and volatile substances release, the second pyrolysis temperature is about 300℃ for cellulose decomposed, and the third pyrolysis temperature is about 400℃ for lignin decomposed.

目錄
誌謝...........................................I
摘要..........................................III
Abstract......................................V
目錄.........................................VIII
圖目錄........................................XIII
第一章 前言......................................1
1-1研究緣起......................................1
1-2研究目的......................................3
第二章 文獻回顧...................................4
2-1 生質能源......................................4
2-2-1國內外生質能源技術發展現況.....................5
2-2-2國內生質能源資材與能源潛勢分析.................7
2-2 一般廢棄物(垃圾)之質量特性......................9
2-3 生質廢棄物能源化技術...........................14
2-4 廢棄物衍生燃料................................20
2-5焙燒技術發展現況...............................22
2-6 焙燒控制條件與影響因子.........................25
2-7焙燒技術的應用實例.............................33
2-8 熱分析.......................................35
2-8-1 熱重量法...................................36
2-8-2 微分熱重量法................................36
2-8-3 熱差分析...................................37
2-8 文獻總結.....................................38
第三章 研究方法與材料.............................39
3-1 研究流程.....................................39
3-2 實驗方法.....................................40
3-2-1 原料前處理.................................40
3-2-2 生質廢棄物原料分析..........................40
3-2-3 三成分試驗.................................42
3-2-4 熱卡計試驗.................................43
3-2-5元素分析試驗................................44
3-2-6熱重分析試驗................................44
3-3 儀器設備....................................45
3-4 田口式直交表最佳化分析方法.....................46
3-4-1 田口式基本原理.............................46
3-4-2 信號雜訊比(S/N).... .......................48
3-4-3直交表.....................................51
3-4-4田口式分析方法..............................53
第四章 結果與討論................................55
4-1 不同生質物焙燒前後之特性分析...................55
4-2 最佳焙燒條件.................................75
4-3 不同生質物熱裂解特性..........................78
4-3-1 熱重損失分析...............................78
4-3-2 纖維素、半纖維素及木質素特性.................83
4-3-3 熱解反應動力學-Ozawa method................88
4-4 焙燒前後形態變化.............................96
第五章 結論與建議................................103
5-1 結論.......................................103
5-2 建議.......................................105
參考文獻.........................................106



表目錄

表2-1 96至99年度全國一般廢棄物清理狀況統計...........8
表2-2 92至97年度全國一般廢棄物濕基物理組成..........10
表2-3 92至97年度全國一般廢棄物濕基化學分析..........11
表2-4 全國垃圾物化組成暨發熱量典型值................12
表2-5 91至96年農業廢棄物種類及產量.................14
表2-6 農林產業剩餘資材(廢棄物)種類及推估數量..........14
表2-7 適用於垃圾之生質能源再利用技術之應用方式與特性...18
表2-8 ASTM中的RDF分類.............................20
表2-9 焚化與RDF系統之比較..........................21
表2-10 生質物焙燒控制條件與影響因子相關文獻整理.......29
表2-11 全球焙燒技術發展現況........................34
表2-12 三種熱分析技術的所需具備條件.................37
表3-1 標準直交表..................................52
表3-2 L16(43) 直交表實驗設計參數..................54
表3-3 L16(43) 直交表實驗配置表....................54
表4-1-1 不同生質物焙燒前之特性分析結果...............57
表4-1-2 廢木屑焙燒後之成分與熱值分析結果.............58
表4-1-3 竹子焙燒後之成分與熱值分析結果...............60
表4-1-4 稻草焙燒後之成分與熱值分析結果...............62
表4-1-5 瓦楞紙焙燒後之成分與熱值分析結果.... .........64
表4-1-6 不同生質物焙燒後之成分與熱值分析結果..........67
表4-1-7不同生質物焙燒後(纖維成分)之特性分析結果.......69
表4-1-8 不同生質物焙燒前特性分析間之相關性檢定結果... .71
表4-1-8 不同生質物焙燒後特性分析間之相關性檢定結果....73
表4-2-1 L16 (43) 直交表實驗數據結果.............. .76
表4-2-2 控制因數之S/N回應表.......................76
表 4-3-1 木屑、竹子熱解反應動力參數結果..............90
表 4-3-2 稻草、瓦楞紙熱解反應動力參數結果............91


圖目錄

圖 2-1 全球初級能源分佈............................6
圖2-2 生質物「能源再利用」關聯圖................... 19
圖2-3 生質物焙燒處理前後型態與性質對照圖............ 23
圖2-4 生質物在不同溫度與時間下之能量密度變化.........27
圖2-5 生質物主要成份受溫度影響之物理化學效應.........27
圖2-6 國外的焙燒技術運用實例.......................35
圖3-1 研究流程................................... 39
圖3-2 生質廢棄物組成份分析.........................42
圖3-3 產品製程之參數圖............................ 48
圖 3-4 品質損失函數的種類..........................50
圖3-5 直交表代表符號..............................51
圖 4-1木屑焙燒後之三成分與熱值分析結果.............. 59
圖4-2 木屑焙燒後之元素分析與熱值分析結果............ 59
圖4-3 竹子焙燒後之三成分與熱值分析結果.............. 61
圖4-4 竹子焙燒後之元素分析與熱值分析結果.............61
圖4-5 稻草焙燒後之三成分與熱值分析結果..............63
圖4-6 稻草焙燒後之元素分析與熱值分析結果.............63
圖4-7 瓦楞紙焙燒後之三成分與熱值分析結果.............65
圖4-8 瓦楞紙焙燒後之元素分析與熱值分析結果...........65
圖4-9 S/N 比回應圖............................... 77
圖4-10 四種生質廢棄物之熱重分析曲線.................80
圖4-11 四種生質物熱重歷時曲線圖.... ................81
圖4-12 四種生質廢棄物T50和R50..................... 82
圖4-13 四種生質廢棄物DTG..........................87
圖4-14 木屑熱解反應動力參數之轉化率.................92
圖4-15 木屑熱解反應動力參數之斜率...................92
圖4-16 竹子熱解反應動力參數之轉化率.................93
圖4-17 竹子熱解反應動力參數之斜率.................. 93
圖4-18 稻草熱解反應動力參數之轉化率.................94
圖4-19 稻草熱解反應動力參數之斜率.................. 94
圖4-20 瓦楞紙熱解反應動力參數之轉化率...............95
圖4-21 瓦楞紙熱解反應動力參數之斜率.................95
圖4-26 生質物焙燒後成品圖......................... 97
圖4-27 FE-SEM生質物焙燒前平面圖................... 99
圖4-28 FE-SEM生質物焙燒前和焙燒後斷面圖............ 102


Almeida, G., Brito, J.O. and Perre, P., 2010, “Alterations in energy properties of eucalyptus wood and bark subjected to torrefaction: The potential of mass loss as a synthetic indicator,” Bioresource Technology, Vol. 101, pp. 9778-9784.

Bourgois, J.P. and Doat, J., 1984, “Torrefied wood from temperate and tropical species, advantages and prospects, ” Bioenergy, Vol. 84, pp. 153-159.

Bridegeman, T.G., Jones J.M., Williams A. and Waldron D.J., 2010, “An investigation of the grindability of two torrefied energy crops,” Fuel, pp. 3911–3918.

Chen, W.P. and Anderson, A.W., 1980, “Extraction of hemicellulose ryegrass straw for the production of glucose isomerase and the use of the resulting straw residue for animal feed,” Biotechnology and Bioengineering, Vol. 22, No. 3, pp. 519-531.

Chen, W.H. and Kuo, P.C., 2010, “A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry,” Energy, Vol. 35, pp. 2580-2586.

Felfli, F.F., Luengo, C.A., Suarez, J.A. and Beaton, P.A., 2005, “Wood briquette torrefaction,” Energy for Sustainable Development, Vol. 3, No. 100, pp. 19-22.

Gilbert, P., Ryu, C., Sharifi, V. and Swithenbank, J., 2009, “Effect of process parameters on pelletisation of herbaceous crops, ” Fuel, Vol. 88, pp. 1491-1497.

Girard, P., and Shah, N., 1991, “Developments on Torrefied Wood, an Alternative to Charcoal for Reducing Deforestation, ” REUR Technical Series, Vol.20, pp. 101-114.

Liu, Y.L., Wei, W.L., Hsu, K.Y. and Ho, W.H., 2004, “Thermal stability of epoxy-silica hybrid materials by thermgravimetric analysis. ” Thermochimica Acta, Vol.412, pp. 139-147.

Macan, J., Brnardic, I., Orlic. S., Ivankovic. H. and Ivankovic M., 2006, “Thermal degration of epoxy-silica organic-inorganic hybrid materials, ” Polymer Degradation and Stability, Vol.91, pp.122-127.

Silverstein, R.A., Chen, Y., Sharma-Shivappa, R.R., Boyette, M.D. and Osborne, J., 2007, “A comparison of chemical pretreatment methods for improving saccharification of cotton stalks,” Bioresource Technology, Vol. 98, No. 16, pp. 3000-3011.

Kiel, J., 2007, “Torrefaction for biomass upgrading into commodity fuels,”Energy Research Centre of the Netherlands, pp. 17-21.

Lipinsky E.S., Arcate, J.R. and Reed T.B., 2002, “Enhanced wood fuels via torrefaction,” Fuel Chemistry Division Preprints, Vol. 47, pp. 408–410.

Nimlos, M.N., Brooking, E., Looker, M.J. and Evans, R.J., 2003, “Biomass torrefaction studies with a molecular beam mass spectrometer,” Division of Fuel Chemistry American Chemical Society, Vol. 48, pp. 590-591.

Prins, M.J., Ptasinski, K.J. and Janssen, F.J.J.G., 2006, “Torrefaction of wood Part 1. Weight loss kinetics,” Journal of Analytical and Applied Pyrolysis, Vol. 77, pp. 28-34.

Prins, M.J., Ptasinski, K.J. and Janssen, F.J.J.G., 2006, “Torrefaction of wood. Part 2. Analysis of products,” Journal of Analytical and Applied Pyrolysis, Vol.77, pp. 35-40.

Phanphanich, M. and Sudhagar, M., 2010, “Impact of torrefaction on the grindability and fuel characteristics of forest biomass,” Bioresource Technology, Vol. 102, pp. 1246-1253.

Pach, M., Zanzi, R. and Bjornbom, E., 2002, “Torrefied biomass a substitute for wood and charcoal,” Proceedings of the 6th Asia-Pacific International Symposium on Combustion and Energy Utilization, Kuala Lumpur, Malaysia, pp. 20-22.

Repellin, V., Govin, A., Rolland, M. and Guyonnet, R., 2010, “Energy requirement for fine grinding of torrefied wood,” Biomass and Bioenergy, Vol. 34, pp. 923-930.

Wise, L.E., Murphy, M. and D’Addieco, A.A., 1946, “Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses,” Paper Trade Journal, Vol. 122, No. 2, pp. 35-43.

王明光,王敏昭,2003,「實用儀器分析」,合記圖書出版社,台北市 。

行政院環境保護署,2009,「垃圾焚化廠轉型生質能源中心可行性評估規畫專案工作計畫期末報告」。

朱敬平,2010,「廢水污泥脫水減量與熱化學轉換利用」,財團法人中興工程顧問社社務會報。

邱永添,1998,「筊白筍殼國畫紙之製造」,碩士論文,國立中興大學森林學研究所,臺中。

吳耿東、李宏台,2004,「生質能源---化腐朽為能源」,科學發展,383 期。

吳耿東、李宏台,2007,「全球生質能源應用現況與未來展望」,林業研究專訊,77期。

吳佩芬、葛家賢,2002,「固態廢棄物衍生燃料技術簡介」, http://www.ftis.org.tw/cpe/download/she/Issue8/tec8_3.htm,瀏覽日期:2011/5/13
李輝煌,2004,「田口方法-品質設計的原理與實務」,高立圖書有限公司,臺北。

唐武裕,2010,「玉米作物剩餘資材焙燒生成物之性質研究」,碩士論文,國立中正大學。

張振昌,2009,「生質能源---固態燃料」,能源與資源研究中心。

陳婷玟,2001,「以筊白筍殼半纖維素為碳源生產Trichoderma longibrachiatum 185聚木糖酶及其在低聚木糖製備上之應用」,碩士論文,國立中興大學食品科學系,臺中。

陳廣文,2007,「滑鼠底座之最佳化設計與製程研究」,碩士論文,國立台北科技大學機電整合研究所,臺北。

黃繼輝,2008,「應用田口法於五軸CNC銑削加工製程之最佳化參數設計」,碩士論文,國立台北科技大學製造科技研究所,臺北。

行政院農業委員會, 2007,http://www.coa.gov.tw/view.php?catid=8,瀏覽日期:2011/5/10

蘇朝墩,2002,「品質工程」,中華民國品質學會。


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔