跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/10 08:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾天星
研究生(外文):Tien-Hsing Tseng
論文名稱:以固定式ZnO觸媒結合不同光源光催化降解Orange G偶氮染料廢水之研究
論文名稱(外文):Using Immobilized ZnO with Combination of Different Light Source for Photocatalytic Degradation of Azo Dye Orange G Wastewater
指導教授:蘇弘毅蘇弘毅引用關係
指導教授(外文):Hung-Yee Shu
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
畢業學年度:99
語文別:中文
論文頁數:147
中文關鍵詞:光催化固定化冷陰極燈管Orange G偶氮染料脫色
外文關鍵詞:photocatalysisimmobilizedcold cathode fluorescent lamp (CCFL)Orange G azo dyedecolorization
相關次數:
  • 被引用被引用:2
  • 點閱點閱:332
  • 評分評分:
  • 下載下載:94
  • 收藏至我的研究室書目清單書目收藏:1
隨著環保意識高漲,染整廢水帶來的污染及色度問題受到政府、產業界及社會大眾的關注,而染整廢水成份複雜,具有高色度、高化學需氧量(COD) 及生物難分解等特性,以傳統二級處理技術無法有效處理,亟需有效提升廢水處理技術。
本研究利用高級氧化程序中之光催化程序,能產生氫氧自由基(•OH) ,迅速將染整廢水脫色,也較無污泥產生問題。而光催化反應主要利用光能來驅動或誘導催化劑表面進行反應,若能充分利用太陽的光來降解環境中的污染物,將更能達到節能的目標。泥漿式反應器大都直接將催化劑加入,因其顆粒微小,使催化劑不易分散及回收再利用,且奈米顆粒釋放於環境中可能會對人體及生物體造成無法預期的健康衝擊。為了避免奈米顆粒不受控制地進入到環境中,本研究(1)以不鏽鋼網作為基材,利用浸鍍(dip coating)方式,將ZnO 披覆於載體(不鏽鋼網)上,以改善粉末不易操作及回收困難問題;(2)探討ZnO 披覆於載體後,結合紫外光或可見光降解Orange G(OG)偶氮染料之可行性。
由FE-SEM、EDS及BET 等基本性質分析後可知,觸媒經浸鍍後能均勻披覆於載體上。藉由批次實驗,探討ZnO 覆膜劑量、染料初濃度、染料溶液pH、光強度、載體反應面積及染料溶液體積等條件,對偶氮染料Orange G降解之影響。ZnO 劑量以60 g/m2 為最佳操作劑量,當劑量超過60 g/m2,降解效率因增加劑量之提升會趨於平緩。染料初濃度測試,則發現隨著染料初濃度的提高,其染料去除率隨之降低,染料溶液pH 則是在鹼性(pH=11)溶液下有最佳脫色效率。紫外光強度愈大、載體反應面積越大、染料溶液體積愈小而有較佳脫色效果。以FTIR 及IC 觀察反應產物變化,結果指出可有效破壞染料中之N=N 鍵結,進而達到脫色的效果。搭配IC 看出反應後有SO42-、NO2-、NO3-等離子生成,並產生HCOOH 及CH3COOH 等產物。

Dyeing industrial wastewater with complicated compositions such as high color intensity, high chemical oxygen demand, and low biodegradation has attracted much attention by government, industry and public. The effluents often are treated insignificantly by the traditional secondary biological treatment processes, that new and effective technologies are urgently needed. In this work, the UV and visible lights were employed to
irradiate the photocatalyst, ZnO, to successfully decolorize the target dye molecules with no sludge production. Instead of solar light or lower energy visible light from UV/ZnO process, the photocatalytic for wastewater treatment saved energy consumption. Wide used slurry type photocatalytic reactors need further separation to recover the spend catalyst, as well as uncontrolled releasing of nano catalyst may cause human health and environmental impacts, that the stainless mesh were used for dip coating ZnO nano particles. UV 365 nm or visible light irradiation utilized ZnO catalyst to test decolorization of Orange G azodye. From FE-SEM and EDS results, stainless steel mesh immobilized ZnO catalyst was shown to be distributed homogenously on the carrier. Experimental conditions such as ZnO dosage, initial dye concentration, pH, light intensity, catalyst area, and solution volume were investigated for Orange G degradation. From the results, the best ZnO dosage was 60 g/m2, that higher than 60 g/m2 could not further improve any color removal efficiency. Under pH 11, the system showed best decolorization efficiency. Higher light intensity, more catalyst area, less solution volume and lower initial dye concentration resulted higher color removal efficiency. From FTIR and IC analysis, dye molecule of Orange G was proved to be destructed to cause color removal. Azo link of -N=N- disappeared during the photocatlytic reaction under FTIR measurement with production of SO42-, NO2-, NO3-, HCOOH and CH3COOH by IC analysis.

致謝 I
摘要 II
Abstract IV
目錄 V
表目錄 X
圖目錄 XII
第一章 緒論 1
1-1 前言 1
1-2 研究目的 3
1-3 研究架構 4
第二章 文獻回顧 6
2-1 染整廢水簡介 6
2-1-1 紡織及染整產業概況 6
2-1-2 染整廢水污染源及其特性 8
2-1-3 染料之分類 12
2-1-4 染整廢水處理現況與法規標準 16
2-1-5 染料廢水處理相關技術 20
2-2 紫外光特性及半導體性質介紹 23
2-2-1紫外線之特性與應用 23
2-2-2 半導體之基本特性 27
2-2-3 半導體之分類 31
2-2-4 覆膜技術 32
2-2-5 半導體光催化之理論 35
2-3 ZnO 40
2-3-1 ZnO的結構及特性 40
2-3-2 光催化反應機制 42
2-3-3 光催化反應動力模式 45
第三章實驗材料設備與方法 48
3-1 ZnO 覆膜之製備 48
3-1-1 光觸媒披覆程序 48
3-1-2 光觸媒基本性質分析 50
3-2 CCFL/ZnO 覆膜光催化程序 51
3-3 實驗藥品與材料 53
3-4 實驗設備 55
3-5 分析儀器 57
3-5-1 分光光度計(UV spectrophotometer) 57
3-5-2 濕式氧化法總有機碳分析儀(Wet Oxidation TOC Analyzer) 58


3-5-3 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope,FE-SEM) 58
3-5-4 BET 比表面積分析儀(Surface Area Analyzer) 59
3-5-5 傅立葉紅外光譜儀(Fourier Transform Infrared Spectroscopy,FT-IR) 59
3-5-6 離子層析儀(Ion Chromatography analyzer,IC) 60
3-5-7雷射粒徑分析儀(Laser Particle Size Analyzer) 61
第四章 結果與討論 62
4-1 ZnO光觸媒披覆特性分析 62
4-2比較懸浮式光觸媒程序與固定式ZnO覆膜程序 67
4-3 比較ZnO與TiO2結合光催化反應 68
4-4 ZnO/UV 覆膜光催化程序 71
4-4-1 背景實驗 71
4-4-2 反應時間之影響 73
4-4-3 載體乾燥溫度之影響 76
4-4-4 攪拌速率之影響 79
4-4-5 載體反應面積之影響 83
4-4-6 ZnO 披覆劑量之影響 86
4-4-7 染料初濃度之影響 88
4-4-8 染料初始pH 值之影響 94
4-4-9 紫外光強度之影響 98
4-4-10 染料溶液體積之影響 102
4-4-11 披覆材料耐久性之影響 106
4-5 比較ZnO/UV及ZnO/Vis兩種程序 110
4-6 比較不同之光源 113
4-7中間產物分析 115
4-7-1 FT-IR 染料結構官能基分析 115
4-7-2 染料溶液陰離子濃度測定 118
第五章 結論與建議 121
5-1 結論 124
5-2 未來方向與建議 125
參考文獻 127
附錄 136
附錄一 ZnO/Vis 覆膜光催化程序 137
附錄1-1 背景實驗 137
附錄1-2反應時間之影響 138
附錄1-3 載體乾燥溫度之影響 140
附錄1-4 攪拌速率之影響 141
附錄1-5 載體反應面積之影響 142
附錄1-6 ZnO 披覆劑量之影響 143
附錄1-7 染料初濃度之影響 144
附錄1-8 染料初始pH 值之影響 145
附錄1-9 光強度之影響 146
附錄1-10 染料溶液體積之影響 147

Andreozzi, R., Caprio, V., Insola, A. and Marotta, R. 1999, "Advanced oxidation processes (AOP) for water purification and recovery", Catalysis Today, vol. 53, no. 1, pp. 51-59.
Akyol, A. and Bayramoglu, M. 2010, "Preparation and characterization of supported ZnO photocatalyst by zincate method", Journal of hazardous materials, vol. 175, no. 1-3, pp. 484-491.
Akyol, A. and Bayramoglu, M. 2008, "The degradation of an azo dye in a batch slurry photocatalytic reactor", Chemical Engineering and Processing: Process Intensification, vol. 47, no. 12, pp. 2150-2156.
Anpo, M., Yamashita, H., Ikeue, K., Fujii, Y., Zhang, S.G., Ichihashi, Y., Park, D.R., Suzuki, Y., Koyano, K. and Tatsumi, T. 1998, "Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts", Catalysis Today, vol. 44, no. 1-4, pp. 327-332.
Azam, A. and Hamid, A. 2006, "Effects of gap size and UV dosage on decolorization of C.I. Acid Orange 7 by UV/H2O2 process", Journal of hazardous materials, vol. 133, no. 1-3, pp. 167-171.
Bahorsky, M.S. 1997, "Textiles", Water Environment Research, vol. 69, no. 4, pp. 658-664.
Bauer, C., Jacques, P. and Kalt, A. 2001, "Photooxidation of an azo dye induced by visible light incident on the surface of TiO2", Journal of Photochemistry and Photobiology A: Chemistry, vol. 140, no. 1, pp. 87-92.
Behnajady, M.A., Modirshahla, N., Daneshvar, N. and Rabbani, M. 2007, "Photocatalytic degradation of C.I. Acid Red 27 by immobilized ZnO on glass plates in continuous-mode", Journal of hazardous materials, vol. 140, no. 1-2, pp. 257-263.
Behnajady, M.A., Modirshahla, N. and Hamzavi, R. 2006, "Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst", Journal of hazardous materials, vol. 133, no. 1-3, pp. 226-232.
Brown, M.A. and DeVito, S.C. 1993, "Predicting azo dye toxicity", Critical Reviews in Environmental Science and Technology, vol. 23, no. 3, pp. 249-324.
Chakrabarti, S. and Dutta, B.K. 2004, "Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst", Journal of hazardous materials, vol. 112, no. 3, pp. 269-278.
Childs, L.P. and Ollis, D.F. 1980, "Is photocatalysis catalytic", Journal of Catalysis, vol. 66, no. 2, pp. 383-390.
Correia, V., Stephenson, T. and Judd, S.J. 1994, "Characterisation of textile wastewaters - A review", Environmental technology, vol. 15, no. 10, pp. 917-929.
Daneshvar, N., Rasoulifard, M.H., Khataee, A.R. and Hosseinzadeh, F. 2007, "Removal of C.I. Acid Orange 7 from aqueous solution by UV irradiation in the presence of ZnO nanopowder", Journal of hazardous materials, vol. 143, no. 1-2, pp. 95-101.
Daneshvar, N., Salari, D. and Khataee, A.R. 2004, "Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2", Journal of Photochemistry and Photobiology A: Chemistry, vol. 162, no. 2-3, pp. 317-322.
Dijkstra, M.F.J., Buwalda, H., de Jong, A.W.F., Michorius, A., Winkelman, J.G.M. and Beenackers, A.A.C.M. 2001, "Experimental comparison of three reactor designs for photocatalytic water purification", Chemical Engineering Science, vol. 56, no. 2, pp. 547-555.
Fernández-Alba, A.R., Hernando, D., Agüera, A., Cáceres, J. and Malato, S. 2002, "Toxicity assays: a way for evaluating AOPs efficiency", Water research, vol. 36, no. 17, pp. 4255-4262.
Gust, D. and Moore, T. A. 1989,"Mimicking photosynthesis", Science, vol. 244, no. 4900, pp. 35-41.
Heiss, G.S., Gowan, B. and Dabbs, E.R. 1992, "Cloning of DNA from a Rhodococcus strain conferring the ability to decolorize sulfonated azo dyes", FEMS microbiology letters, vol. 99, no. 2-3, pp. 221-226.
Kao, C.M., Chou, M.S., Fang, W.L., Liu, B.W. and Huang, B.R. 2001, "Regulating colored textile wastewater by 3/31 wavelength admi methods in Taiwan", Chemosphere, vol. 44, no. 5, pp. 1055-1063.
Khodja, A.A., Sehili, T., Pilichowski, J. and Boule, P. 2001, "Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions", Journal of Photochemistry and Photobiology A: Chemistry, vol. 141, no. 2-3, pp. 231-239.
Klaus Golka, Silke Kopps, Zdislaw W. Myslak, 2004, "Carcinogenicity of azo colorants: influence of solubility and bioavailability ", Toxicology Letters, vol. 151 , no. 1, pp. 203–210.
Legan, R.W. 1982,"Ultraviolet light takes on CPI role ", Chemical Engineering, pp. 95-100
Linsebigler, A.L., Lu, G. and Yates Jr., J.T. 1995, "Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results", Chemical reviews, vol. 95, no. 3, pp. 735-758
Lizama, C., Freer, J., Baeza, J. and Mansilla, H.D. 2002, "Optimized photodegradation of Reactive Blue 19 on TiO2 and ZnO suspensions", Catalysis Today, vol. 76, no. 2-4, pp. 235-246.
Matthews, R.W. 1988, "Kinetics of photocatalytic oxidation of organic solutes over titanium dioxide", Journal of Catalysis, vol. 111, no. 2, pp. 264-272.
Meng, X., Lin, B. and Fu, Z. 2007, "Influence of CH3COO– on the room temperature photoluminescence of ZnO films prepared by CVD", Journal of Luminescence, vol. 126, no. 1, pp. 203-206.
Mohammad A. Behnajady , Seddigheh Ghorbanzadeh Moghaddam, Nasser Modirshahla,Mohammad Shokri, 2009," Investigation of the effect of heat attachment method parameters at photocatalytic activity of immobilized ZnO nanoparticles on glass plate", Desalination, vol. 249, pp. 1371-1376.
Muruganandham, M. and Swaminathan, M. 2006, "Photocatalytic decolourisation and degradation of Reactive Orange 4 by TiO2-UV process", Dyes and Pigments, vol. 68, no. 2-3, pp. 133-142.
Pare, B., Jonnalagadda, S.B., Tomar, H., Singh, P. and Bhagwat, V.W. 2008, "ZnO assisted photocatalytic degradation of acridine orange in aqueous solution using visible irradiation", Desalination, vol. 232, no. 1-3, pp. 80-90.
Peternel, I.T., Koprivanac, N., Božić, A.M.L. and Kušić, H.M. 2007, "Comparative study of UV/TiO2, UV/ZnO and photo-Fenton processes for the organic reactive dye degradation in aqueous solution", Journal of hazardous materials, vol. 148, no. 1-2, pp. 477-484
Prengle, H.W. and Mauk, C.E. 1978, "New Technology: Ozone/UV Chemical oxidation wastewater process for metal complexes, organic species and disinfection", Aiche Symposium Series, vol. 74, no. 178, pp. 228-244.
Ramamurthy, V. 1991, "Photochemistry in organized and constrained media ",VCH: New York.
Rao, A.N., Sivasankar, B. and Sadasivam, V. 2009, "Kinetic studies on the photocatalytic degradation of Direct Yellow 12 in the presence of ZnO catalyst", Journal of Molecular Catalysis A: Chemical, vol. 306, no. 1-2, pp. 77-81.
Ray, A.K. and Beenackers, A.A.C.M. 1998, "Development of a new photocatalytic reactor for water purification", Catalysis Today, vol. 40, no. 1, pp. 73-83.
Rozzi, A., Ficara, E., Cellamare, C.M. and Bortone, G. 1999, "Characterization of textile wastewater and other industrial wastewaters by respirometric and titration biosensors", Water Science and Technology, vol. 40, no. 1, pp. 161-168.
Sakthivel, S., Neppolian, B., Shankar, M.V., Arabindoo, B., Palanichamy, M. and Murugesan, V. 2003, "Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2", Solar Energy Materials and Solar Cells, vol. 77, no. 1, pp. 65-82.
San, N., Hatipoglu, A., Koçtürk, G. and Çınar, Z. 2002, "Photocatalytic degradation of 4-nitrophenol in aqueous TiO2 suspensions: Theoretical prediction of the intermediates", Journal of Photochemistry and Photobiology A: Chemistry, vol. 146, no. 3, pp. 189-197.
Sakai, H., Kawahara, H., Shimazaki, M. and Abe, M. 1998, "Preparation of ultrafine titanium dioxide particles using hydrolysis and condensation reactions in the inner aqueous phase of reversed micelles: Effect of alcohol addition", Langmuir, vol. 14, no. 8, pp. 2208-2211.
Shu, H. and Chang, M. 2006, "Development of a rate expression for predicting decolorization of C.I. Acid Black 1 in a UV/H2O2 process", Dyes and Pigments, vol. 70, no. 1, pp. 31-37.
Shu, H. and Chang, M. 2005, "Decolorization effects of six azo dyes by O3, UV/O3 and UV/H2O2 processes", Dyes and Pigments, vol. 65, no. 1, pp. 25-31.
Strickland, A. F., and Perkins, W. S. 1995 ,"Decolorization of continuous dyeing wastewater by ozanation",Textile Chemist and Colorist, vol. 27, no. 5, pp. 11.
Stumn, W. 1992, "Chemistry of the Solid-Water Interface", John Wiley and Sons, New York.
Stylidi, M., Kondarides, D.I. and Verykios, X.E. 2004, "Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO2 suspensions", Applied Catalysis B: Environmental, vol. 47, no. 3, pp. 189-201.
Vandevivere, P.C., Bianchi, R. and Verstraete, W. 1998, "Treatment and reuse of wastewater from the textile wet-processing industry: Review of emerging technologies", Journal of Chemical Technology and Biotechnology, vol. 72, no. 4, pp. 289-302.
Yassıtepe, E., Yatmaz, H.C., Öztürk, C., Öztürk, K. and Duran, C. 2008, "Photocatalytic efficiency of ZnO plates in degradation of azo dye solutions", Journal of Photochemistry and Photobiology A: Chemistry, vol. 198, no. 1, pp. 1-6.
Yeber, M., Rodríguez, J., Freer, J., Baeza, J., Durán, N. and Mansilla, H.D. 1999, "Advanced oxidation of a pulp mill bleaching wastewater", Chemosphere, vol. 39, no. 10, pp. 1679-1688.
Zepp, R. G. 1988, " Factors Affecting the Photochemical Treatment of Hazardous Waste", Environmental Science and Technology, vol. 22, pp. 256.
Zhan, H. and Tian, H. 1998, "Photocatalytic degradation of acid azo dyes in aqueous TiO2 suspension I. The effect of substituents", Dyes and Pigments, vol. 37, no. 3, pp. 231-239.
王美雲,2003,「以菌種突變與混合菌相策略進行生物褪色動力學之研究」,國立成功大學化學工程學系,碩士論文。
王登楷,2001,「以高級氧化程序處理染整廢水之光反應器設計研究」,大葉大學環境工程研究所,碩士論文。
王雲珍,1992,「半導體」,亞東書局。
行政院環境保護署,2010,水污染防治法第七條第二項。http://law.epa.gov.tw/zh-tw/laws/480770486.html
余信宏,2007,「零價鐵結合UV/H2O2 處理染料廢水之可行性研究」,弘光科技大學環境工程研究所,碩士論文。
吳政峰,2005,「溫度與濕度效應對光催化分解氣相揮發性有機物之影響」,國立中山大學環境工程研究所,博士論文。
吳榮宗,1985,「工業觸媒概論」,黎明書局。
宋欣真、鄭仁川,1994,「台灣地區染整之水污染防治現況」,工業污染防治,第49期,第27-46頁。
林永盛,2002,「生長與染料褪色過程代謝產物促進染料生物褪色之探討」,私立逢甲大學化學工程學系,碩士論文。
邱永亮、魏盛德,2000,「染色化學」,徐氏文教基金會,第1-8頁。
姚興川,2006,「台灣紡織產業發展策略和模式之研究」,紡織產業綜合研究所。
胡振國譯,1989,「半導體原件-物理與技術」,全華圖書公司。
財團法人中技社,「21世紀的綠色技術 — 光催化應用」。www.ctci.org.tw/public/Attachment/562714282071.doc//查閱時間2011.2.9。
康世芳,1999,「染整業87年放流水標準合理性修訂之研議」,台灣區棉布印染整理工業同業公會委託研究報告。
張詠禎,2010,「以固定式CCFL/TiO2 程序光催化分解Orange G 偶氮染料廢水之研究」,弘光科技大學環工所,碩士論文。
莊英良,1996,「以紫外線/二氧化鈦程序分別處理含六價鉻及亞素靈水溶液反應行為之研究」,國立台灣工業技術學院化學工程技術研究所,碩士論文。
陳皇翰,2005,「利用可見光探討銀沉積於奈米氧化鋅的光催化活性」,成功大學化學所,碩士論文。
陳瑞隆,2006,「中小企業白皮書」,經濟部中小企業處,第130-131頁。
溫慧怡,2003,「高長寬比氧化鋅奈米柱之生成-氫氣後處理效應研究」,國立成功大學化學工程學系,碩士論文。
經濟部工業局,1995,「工業減廢手冊」。
經濟部工業局,2004,「2004年環保技術輔導計畫」。
經濟部工業局編印,2002,「染整業污染防治與環境管理系統實務手冊」。
經濟部統計處,2009,「紡織所ITIS計畫整理」。
經濟部統計處,2010,「紡織所ITIS計畫整理推估」。
經濟部環保署工業減廢聯合輔導小組,1995,「工業減廢技術手冊4-染整工業」,第21-23 頁。
劉全得,2005,「偶氮染料之二氧化鈦光催化脫色反應特性研究」,國立高雄第一科技大學環境與安全衛生工程系,碩士論文。
盧伯麟,2005,「二氧化鈦光觸媒薄膜備製及改質與環境污染物去除之研究」,逢甲大學環境工程與科學系,碩士論文。
顏上惟,2000,「紡織染整業推行ISO 14001環境管理系統之先期審查」,品質月刊,http://she.moeaidb.gov.tw/subject/session-10.htm/查閱時間2011.2.11。
蘇弘毅、張明琴、簡韶儀、鄭仲甫,2006,「以Fenton 程序處理兩種染料廢水脫色及降低TOC 之研究」,第十八屆環境工程年會暨廢水處理技術研討會論文集,台中,第168 頁。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top