(3.239.33.139) 您好!臺灣時間:2021/03/08 18:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃衍翔
研究生(外文):Yen-Hsiang Huang
論文名稱:以茶葉廢渣及電混凝技術去除水溶液中鎵、銦離子之研究
論文名稱(外文):Removal of gallium and indium ions from aqueous solutions by tea waste and electrocoagulation
指導教授:周偉龍周偉龍引用關係
指導教授(外文):Wei-Lung Chou
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:職業安全與防災研究所
學門:環境保護學門
學類:環境防災學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:128
中文關鍵詞:鎵離子銦離子茶葉廢渣吸附電混凝吸附熱力學等溫吸附吸附動力學
外文關鍵詞:Gallium ionsIndium ionsTea wasteAdsorptionElectrocoagulationThermodynamicsAdsorption isothermsAdsorption kinetics
相關次數:
  • 被引用被引用:1
  • 點閱點閱:319
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
半導體與光電面板為國家重點高科技產業,隨著半導體與光電面板產業技術日新月異發展的同時,製程中所產生的大量酸性廢液和鎵、銦金屬及其化合物的使用有越來越多的趨勢。「綠色化學與永續發展」概念的興起與廢棄物的再生利用已成為一重要的潮流,因此本研究將使用茶葉廢渣及電混凝技術來處理水溶液中的鎵、銦離子,並探討不同操作參數對鎵、銦離子去除效率的影響。第一部分係以茶葉廢渣分別吸附水溶液中的鎵、銦離子,並觀察在不同的操作參數(包括:吸附劑量、起始濃度及溫度)下,茶葉廢渣對水溶液中鎵、銦離子吸附效率與吸附容積的影響,同時也藉由吸附熱力學參數、等溫吸附模式以及吸附動力學來描繪茶葉廢渣吸附鎵、銦離子的吸附特性,其實驗結果顯示,茶葉廢渣可有效吸附水溶液中的鎵、銦離子;溶液pH值為4.0-5.0時茶葉廢渣對水溶液中鎵、銦離子的吸附效果最佳;吸附熱力學參數結果顯示,茶葉廢渣吸附水溶液中鎵、銦離子之過程為自發性的吸熱反應;等溫吸附模式中則較符合Freundlich等溫吸附模式的假設;吸附動力則較適合以二級動力模式來描述茶葉廢渣吸附鎵、銦離子之動力機制。
第二部分則係以電混凝程序來處理水溶液中的銦離子,其中探討不同操作參數(如:電流密度、電解質濃度、起始濃度以及溫度)對水溶液中銦離子去除效率之影響,並以去除水溶液中每公斤之銦離子所需的電能消耗作為較適化操作條件之選擇依據,同時探討電混凝程序所產生之金屬氫氧化物對溶液中銦離子的吸附特性。根據實驗結果顯示,當電流密度6.4 mA cm-2、電解質濃度0.003 N NaCl及溫度298 K時,銦離子去除效率可達90 %以上,電能消耗僅有0.085 kWh kg-1;當pH值低於6.1時,電混凝程序所導致之之銦離子去除效率比直接添加氫氧化鈉所形成之氫氧化銦的沉澱大5倍以上;等溫吸附模式則以Langmuir等溫吸附模式較適合用來描述Fe(OH)3吸附水溶液中銦離子之過程,因此以電混凝程序處理水溶液中的銦離子較符合Langmuir等溫吸附模式的基本假設,該吸附過程屬單層吸附。

Gallium, indium and its compounds have numerous industrial applications in the manufacture of optoelectronics and semiconductors. Two separate parts are represented as the main body of this thesis. In first part, we used batch adsorption techniques to evaluate the potential suitability of tea waste as an environmentally friendly adsorbent for the removal of gallium, indium ions from aqueous solution. In addition, we also investigated the effects of process parameters, such as the solution pH, initial concentration of gallium, indium ions, adsorbent dose and temperature on adsorption performance. The experimental data were fitted with several adsorption isotherm models to describe the adsorption process of gallium, indium ions onto the tea waste. This study indicated that tea waste could be used as an effective and environmentally friendly adsorbent for the treatment of gallium, indium-containing aqueous solutions. The tea waste at pH 4.0 gave the greatest zeta potential value. Therefore, adsorption of gallium, indium ions onto tea waste is at optimum in the pH range 4-5. Thermodynamic parameters, including the Gibbs free energy, enthalpy, and entropy, indicated that the gallium, indium adsorption of aqueous solutions onto tea waste was feasible, spontaneous and endothermic in the temperature range of 288 K to 318 K. The experimental data were fitted with several adsorption isotherm models to describe the adsorption process of gallium, indium ions onto the tea waste. The predictions of the Freundlich isotherm model satisfactorily matched the experimental observations. In addition, the kinetic data obtained at different initial concentrations were analyzed using pseudo-first-order and pseudo-second-order kinetic models. A pseudo-second-order model provided a good fit to the experimental results with correlation coefficients greater than 0.99.
The second part in this thesis is to investigate the effect of process parameters on the removal of indium ions from aqueous solutions using iron electrocoagulation. Various operating parameters that could potentially affect the removal efficiency were investigated, including the current density, pH variation, supporting electrolyte, initial concentration, and temperature. The optimum current density, supporting electrolyte concentration, and temperature were found to be 6.4 mA cm-2, 0.003 N NaCl, and 298 K, respectively. When the pH values lower than 6.1, the removal efficiencies of indium ions via electrocoagulation were up to 5 times greater than those by adding sodium hydroxide. The adsorption of indium ions preferably fitting the Langmuir adsorption isotherm suggests monolayer coverage of adsorbed molecules.

誌謝 I
摘要 III
Abstract V
目 錄 VII
表目錄 IX
圖目錄 X
第一章 前言 1
1-1 研究緣起 1
1-2 研究動機與目的 2
第二章 文獻回顧 4
2-1 茶葉之簡介 4
2-1-1 茶葉起源與現況 4
2-1-2 茶葉的成份及其吸附因子 5
2-2 鎵、銦金屬性質簡介 7
2-2-1 鎵金屬的特性及應用 7
2-2-2 銦金屬的特性及應用 9
2-2-3 溶液中金屬離子的分離方法 10
2-3 吸附理論 14
2-3-1吸附作用的種類 14
2-3-2影響吸附的因子 16
2-3-3特定吸附與非特定吸附 18
2-3-4等溫吸附模式 19
2-3-5吸附動力學模式 21
2-3-6吸附熱力學的探討 23
2-4 電混凝技術介紹與應用 27
2-4-1 混凝機制 27
2-4-2 電混凝理論與機制 30
2-4-3 影響電混凝處理效率之主要參數 35
2-4-4 電混凝技術之應用 38
第三章 實驗方法與設備 59
3-1 茶葉廢渣吸附水溶液中鎵、銦離子之程序 59
3-2 電混凝程序去除水溶液中銦離子之程序 61
3-3 實驗藥品、儀器與設備 63
3-3-1 實驗藥品 63
3-3-2 實驗儀器與設備 64
3-4實驗儀器分析原理與量測 64
3-4-1原子吸收光譜儀 64
3-4-2傅氏轉換紅外線光譜儀 66
3-4-3比表面積分析儀 66
第四章 結果與討論 74
4-1 茶葉廢渣吸附水溶液中鎵離子之研究 74
4-1-1 茶葉廢渣之基本性質分析 74
4-1-2 吸附劑量對鎵離子吸附效率與容積之探討 75
4-1-3 鎵離子起始濃度對吸附效率與容積之探討 76
4-1-4 溫度對鎵離子吸附效率與容積之探討 76
4-1-5 溶液pH值對鎵離子吸附效率之影響 77
4-1-6 吸附熱力學之探討 78
4-1-7 等溫吸附模式之探討 79
4-1-8 吸附動力學之探討 79
4-2 茶葉廢渣吸附水溶液中銦離子之研究 80
4-2-1溶液pH值對銦離子吸附效率之影響 80
4-2-2 吸附劑量對銦離子吸附效率與容積之探討 81
4-2-3銦離子起始濃度對吸附效率與容積之探討 82
4-2-4溫度對銦離子吸附效率與容積之探討 82
4-2-5 吸附熱力學之探討 83
4-2-6 等溫吸附模式之探討 83
4-2-7 吸附動力學之探討 84
4-3 定電流之電混凝程序處理水溶液中銦離子之研究 84
4-3-1 電流密度與電能消耗對銦離子去除效率之影響 84
4-3-2 電解質濃度與電能消耗對銦離子去除效率之影響 86
4-3-3 起始濃度對銦離子去除效率之影響 87
4-3-4 溫度與電能消耗對銦離子去除效率之影響 88
4-3-5 溶液pH值對電混凝程序之影響 89
4-3-6 等溫吸附模式之探討 90
第五章 結論 108
5-1 研究總結 108
5-1茶葉廢渣吸附水溶液中鎵離子之探討 108
5-2茶葉廢渣吸附水溶液中銦離子之探討 109
5-3定電流之電混凝程序處理水溶液中銦離子之探討 110
參考文獻 112
附 錄 128

Aksu, Z., 2002, “Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel (II) ions onto Chlorella vulgaris,” Process Biochem., Vol. 38, pp. 89-99.
Aksu, Z. and İşoğlu, İ.A., 2005, “Removal of copper (II) ions from aqueous soluteion by biosorption onto agricultural waste sugar beet pulp,” Process Biochem., Vol. 40, pp. 3031-3044.
Alfantatazi, A.M. and Moskalyk, R.R., 2003, “Processing of indium: a review,” Miner. Eng., Vol. 16, pp. 687-694.
Alfarra, A., Frackowiak, E. and Béguin, F., 2004, “The HSAB concept as a means to interpret the adsorption of metal ions onto activated carbons,” Appl. Surf. Sci., Vol. 228, pp. 84-92.
Alkan, M., Doğan, M., Turhan, Y., Demirbaş, Ö. and Turan, P., 2008, “Adsorption kinetics and mechanism of maxilon blue 5G dye on sepiolite from aqueous solutions,” Chem. Eng. J., Vol. 139, pp. 213-223.
Amarasinghe, B.M.W.P.K. and Williams, R.A., 2007, “Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater,” Chem. Eng. J., Vol. 132, pp. 299-309.
Balasubramanian, N., Kojima, T., Basha, C.A. and Srinivasakannan, C., 2009, “Removal of arsenic from aqueous solution using electrocoagulation,” J. Hazard. Mater., Vol. 167, pp. 966-969.
Bensadok, K., Benammar, S., Lapicque, F. and Nezzal, G., 2008, “Electrocoagulation of cutting oil emulsions using aluminium plate electrodes,” J. Hazad. Mater., Vol. 152, pp. 423-430.
Cay, S., Uyanik, A. and Ozajik, A., 2004, “Single and binary component adsorption of copper (II) and cadmium (II) from aqueous solutions using tea-industry waste,” Sep. Purif. Technol., Vol. 38, pp. 273-280.
Chang, K.L., Liao, W.T., Yu, C.L., Lan, C.C., Chang, W. and Yu, H.S., 2003, “Effects of gallium on immune stimulation and apoptosis induction in human peripheral blood mononuclear cells,” Toxicol. Appl. Pharmacol., Vol. 193, pp. 209-217.
Chen, X., Chen, G. and Yue, P.L., 2000, “Separation of pollutants from restaurant wastewater by electrocoagulation,” Sep. Purif. Technol., Vol. 19, pp. 65-76.
Chen, G., 2004, “Electrochemical technologies in wastewater treatment,” Sep. Purif. Technol., Vol. 38, pp. 11-41.
Chou, W.L., Wang, C.T. and Huang, K.Y., 2009, “Effect of operating parameters on indium (III) ion removal by iron electrocoagulation and evaluation of specific energy consumption,” J. Hazard. Mater., Vol. 167, pp. 467-474.
Chou, W.L., Wang, C.T. and Huang, K.Y., 2009, “Effect of operating parameters on indium (III) ion removal by iron electrocoagulation and evaluation of specific energy consumption,” J. Hazard. Mater., Vol. 167, pp. 467-474.
Chou, W.L., Wang, C.T., Yang, K.C. and Huang, Y.H., 2008, “Removal of gallium (III) ions from acidic aqueous solution by supercritical carbon dioxide extraction in the green separation process,” J. Hazard. Mater., Vol. 160, pp. 6-12.
Daneshvar, N., Oladegaragoze, A. and Djafarzadeh, N., 2006, “Decolorization of basic dye solutions by electrocoagulation: An investigation of the effect of operational parameters,” J. Hazard. Mater., Vol. B129, pp. 116-122.
Davis, W.M., Erickson, C.L., Johnston, C.T., Delfino, J.J. and Porter, J.E., 1999, “Quantitative Fourier Transform Infrared spectroscopic investigation humic substance functional group composition,” Chemosphere, Vol. 38, pp. 2913-2928.
Den, W. and Huang, C., 2005, “Electrocoagulation for removal of silica nano-particles from chemical-mechanical-planarization wastewater.” Colloids and Surface A, Vol. 254, pp. 81-89.
Doğan, M. and Alkan, M., 2003, “Adsorption kinetics of methyl violet onto perlite,” Chemosphere, Vol. 50, pp. 517-528.
Donini, J.C., Kan, J., Szynkarczuk, J., Hassan, T.A. and Kar, K.L., 1994, “The operating cost of electrocoagulation,” The Canadian Journal of Chemical Engineering, Vol. 72, pp. 1007-1012.
Dumortier, R., Weber, M.E. and Vera, J.H., 2005, “Removal and recovery of gallium from aqueous solutions by complexation with sodium di-(n-octyl) phosphinate,” Hydrometallurgy, Vol. 76, pp. 207-215.
El-Ashtoukhy, E.-S.Z., Amin, N.K. and Abdelwahab, O., 2009, “Treatment of paper mill effluents in batch-stirred electrochemical tank reactor,” Chem. Eng. J., Vol. 146, pp. 205-210.
Feng, T.C., Yang, B., Liu, D.C., Dai, Y.N., Xu, B.Q. and Deng, Y., 2007, “Development of technology on producing indium and the industry status of indium,” Metallurgical Collections, Vol. 2, pp. 42-47.
Foley, R.T., 1986, “Pitting Corrosion of Aluminium Single Crystal in NaCl Solutions,” Corrosion, Vol. 42, pp. 277-288.
Gabriela, R.M., Eduardo, C.M., Juan, A.C., Bryan, B. and Carlos B.D., 2007, “Aluminum electrocoagulation with peroxide applied to wastewaterfrom pasta and cookie processing,” Sep. Purif. Technol., Vol. 54, pp. 124-129.
Golder, A.K., Samanta, A.N. and Ray, S., 2006, “Removal of phosphate fromaqueous solutions using calcined metal hydroxides sludge waste generated from electrocoagulation,” Sep. Purif. Technol., Vol. 52, pp. 102-109.
Heidmann, I. and Calmano, W., 2008, “Removal of Zn (II), Cu (II), Ni (II), Ag (I) and Cr (VI) present in aqueous solutions by aluminium electrocoagulation,” J. Hazad. Mater., Vol. 152, pp. 934-941.
Ho, Y.S. and McKay, G., 1998, “Kinetic models for the sorption of dye from aqueous solutionby wood,” J. Environ. Sci. Health Part B: Process. Saf. Environ. Prot., Vol. 76, pp. 183-191.
Holt, P.K., Barton, G.W. and Mitchell, C.A., 1999, “Electroagulation as a wastewater treatment,” The Third Australian Environmental Engineering Research Event, November Castlemaine, Victoria, pp. 23-26.
Holt, P.K., Barton, G.W., Wark, M. and Mitchell, C.A., 2002, “A quantitative comparison between chemical dosing and electrocogulation,” Colloids and Surfaces A, Vol. 211, pp. 233-248.
Hong, T., Qin, D.X., Tian, Y.L. and Lin, F.C., 2004, “Indium market and the characteristics of indium resources in china,” Yunnan geographic environment research, Vol. 16, pp. 27-31.
Hu, C.Y., Lo, S.L. and Kuan, W.H., 2003, “Effects of co-existing anions on fluoride removal in electrocoagulation (EC) process using aluminum electrodes,” Water Res., Vol. 37, pp. 4513-4523.
Hu, C.Y., Lo, S.L., Kuan, W.H. and Lee, Y.D., 2008, “Treatment of high fluoride-content wastewater by continuous electrocoagulation-flotation system with bipolar aluminum electrodes,” Sep. Purif. Technol., Vol. 60, pp. 1-5.
Ilhan, F., Kurt, U., Apaydin, O. and Gonullu, M.T., 2007, “Treatment of leachate by electrocoagulation using aluminm and iron electrodes,” J. Hazad. Mater., Vol. 154, pp. 381-389.
Jiang, J.Q., Cooper, C. and Quki, S., 2002, “Comparison of modified montmorillonite adsorbents. Part I. Preparation, characterization and phenol adsorption,” Chemosphere, Vol. 47, pp. 711-716.
Kawaguchi, H., 2000, “Determination of ultratrace metals of group-13 elements in natural water by graphite-furnace AAS after preconcentration with solvent extraction and back extraction,” Bunseki Kagaku, Vol. 49, pp. 801-802.
Kobya, M. and Delipinar S., 2007, “Treatment of the baker’s yeast wastewater by electrocoagulation,” J. Hazad. Mater., Vol. 154, pp. 1133-1140.
Koparal, A.S. and Öğütveren, Ü.B., 2002, “Removal of nitrate from water by electroreduction and electrocoagulation,” J. Hazard. Mater., Vol. 89, pp. 83-94.
Koparal, A.S., Yildiz, Y.Ş., Keskinler, B. and Demircioglu, N., 2008, “Effect of initial pH on the removal of humic substances from wastewater by electrocoagulation,” Sep. Purif. Technol., Vol. 59, pp. 175-182.
Kovar, J., Seligman, P. and Gelfand, E.W., 1990, “Differential growth-inhibitory effects of gallium on B-lymphocyte lines in high versus low iron concentrations,” Cancer Res., Vol. 50, pp. 5727-5730.
Kumar, P.R., Chaudhari, S., Khilar, K.C. and Mahajan, S.P., 2004, “Removal of arsenic from water by electrocoagulation,” Chemosphere, Vol. 55, pp. 1245-1252.
Lagergren, S., 1898, “About the theory of so-called adsorption of soluble substance,” Kung Sven. Veten. Hand, Vol. 24, pp. 1-39.
Lai, C.L. and Lin, S.H., 2003, “Electrocoagulation of chemical mechanical polishing (CMP) wastewater from semiconductor,” Chem. Eng. J., Vol. 95, pp. 205-211.
Lu, Y., Wu, C., Lin, W., Tang, L. and Zeng, H., 1994, “Preparation and adsorption properties of the chelating fibers containing amino groups,” J. Appl. Polym. Sci., Vol. 53, pp. 1461-1468.
Mahvi, A.H., Naghipour, D., Vaezi, F. and Nazmara, S., 2005, “Teawaste as an adsorbent for heavy metal removal from industrial wastewaters,” American Journal of Applied Sciences, Vol. 2, pp. 372-375.
Malkoc, E. and Nutoglu, Y., 2005, “Investigation of nickel (II) removal from aqueous solution using factory waste,” J. Hazard. Mater., Vol. B127, pp. 120-128.
Malkoc, E. and Nuhoglu, Y., 2006, “Removal of Ni (II) ions from aqueous solutions using waste of tea factory Adsorption on a fixed-bed column,” J. Hazard. Mater., Vol. 135, pp. 328-336.
Malkoc, E. and Nuhoglu, Y., 2007, “Potential of tea factory waste for chromium (VI) removal from aqueous solutions: Thermodynamic and kinetic studies,” Sep. Purif. Technol., Vol. 54, pp. 291-298.
Matteson, M.J., Dobson, R.L., Glenn, J.R.W., Kukunoor, N.S., Waits III, W.H. and Clayfield, E., 1995, “Electrocoagulation and separation of aqueous suspensions of ultrafine particles,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 104, pp. 101-109.
Mameri, N., Yeddou, A.R., Lounici, H., Belhocine, D., Grib, H. and Bariou, B., 1998, “Defluoridation of septentrional Sahara water of North Africa by electrocoagulation process using bipolar aluminium electrodes,” Water Res., Vol. 32, pp. 1604-1612.
Minamisawa, H., Murashima, K., Minamisawa, M., Arai, N. and Okutani T. 2003, “Determination of indium by graphite furnace atomic absorption spectrometry after coprecipitation with chitosan,” Anal. Sci., Vol. 19, pp. 401-404.
Mitsuaki, S., Michiko, T., Masazumi, S., Masakuni, D., Toshio M. and Mari M.Y., 2001, “Simultaneous determination of twelve tea catechins by high-performance liquid chromatography with electrochemical detection,” Analyst, Vol. 126, pp. 816-820.
Muraviev, D., Warshawsky, A. and Gorshkov, V.I., 2000, “Ion exchange,” Marcel Dekker, New York.
Myasoedova, G.V., skaya, I.I. and Savvin, S.B., 1985, “New chelating sorbents for noble metals,” Talanta, Vol. 32, pp. 1105-1112.
Nakatsuka, S., Nakate, I. and Miyano, T., 1996, “Drinking water treatment by using ultrafiltration hollow fiber menbrane,” Desalination, Vol. 106, pp. 55-61.
Nagata, T., Hayatsu, M. and Kosuge, N., 1992, “Identification of aluminium forms in tea leaves by 27Al NMR,” Phytochemistry, Vol. 31, pp. 1215-1218.
Nasuha, N., Hameed, B.H. and Mohd Din, Azam T., 2010, “Rejected tea as a potential low-cost adsorbent for the removal of methylene blue,” J. Hazard. Mater., Vol. 175, pp. 126-132.
Nieboer, E. and Mcbrydy, W., 1973, “Free-energy relations in coordination chemistry (III) comprehensive index to complex stability,” Canadian Journal of Chemistry, Vol. 51, pp. 2512-2524.
Pazenko, T.Y., Khalturina, T.I., Kolova, A.F. and Rubailo, I.S., 1985, “Electrocoagulation treatment of oil-containing wastewaters,” J. Appl. Chem. USSR, Vol. 60, pp. 2383-2387.
Pearson, R.G., 1963, “Hard and soft acids and bases,” J. Am. Chem. Soc., Vol. 85, pp. 3533-3539.
Pouet, M.F. and Grasmick, A., 1995, “Urban wastewater treatment by electrocoagulation and flotation,” Water Sci. Technol., Vol. 31, pp. 275-283.
Ramirez, E.R., Barber, L.K. and Clemens, O.A., 1977, “Physicochemical treatment of tannery wastewater by electroflotation,” Proc. 32nd Ind. Waste Conference, Purdue University, pp. 183-188.
Ramirez, E.R., 1979, “Comarative physicochemical study of industrial wastewater treatment by electrolytic dispersed air and dissolved air flotation technilogies,” Proc. 34th Ind. Waste Conference, Purdue University, pp. 699-709.
Robinson, A.L., 1983, “GaAs readied for high-seed microcircuits,” Science, Vol. 219, pp. 275-277.
Şahset, İ., Nuhi, D. and Yalçın, Ş.Y., 2006, “The effects of pH on phosphate removal from wastewater by electrocoagulation with iron plate electrodes,” J. Hazard. Mater., Vol. B137, pp. 1231-1235.
Saygideger, S., Gulnaz, O., Istifli, E.S. and Yuxel, N., 2005, “Adsorption of Cd (II), Cu (II) and Ni (II) ions by Lemna minor L effect of physicochemical environment,” J. Hazard. Mater., Vol. 126, pp. 96-104.
Scott, K., 1981, “Metal recovery using a moving-bed electrode,” J. Appl. Electrochem., Vol. 11, pp. 339-346.
Şengil, Ì.A. and Özacar, M., 2006, “Treatment of dairy wastewaters by electrocoagulation using mild steel electrodes,” J. Hazard. Mater., Vol. 137, pp. 1197-1205.
Subramanyan, V., Jothinathan, L., Jeganathan, J. and Ganapathy, S., 2009, “Remediation of phosphate-contaminated water by electrocoagulation with aluminium, aluminium alloy and mild steel anodes,” J. Hazard. Mater., Vol. 164, pp. 1480-1486.
Tuzen, M. and Soylak, M., 2006, “A solid phase extraction procedure for indium prior to its graphite furnace atomic absorption spectrometric determination,” J. Hazard. Mater., Vol. 129, pp. 179-185.
Vijayaraghavan, K., Ramanujam, T.K. and Balasubramanian, N., 1999, “In situ hypochlorous acid generation for the treatment of distillery spentwash,” Ind. Eng. Chem. Res., Vol. 38, pp. 2264-2267.
Walter, J. and Weber, J., 1972, “Physicochemical processes for water quality control,” Wiley-Interscience, Canada.
Wang, J.C., 2003, “Production processes and uses of gallium,” Sichuan Nonferrous Metals, Vol. 4, pp. 14-19.
Wasewar, K.L., Atif, M., Prasad, B. and Mishra, I.M., 2009, “Batch adsorption of zinc on tea factory waste,” Desalination, Vol. 244, pp. 66-71.
Wood, S.A. and Samsonl, I.M., 2006, “The aqueous geochemistry of gallium, germanium, indium and scandium,” Ore Geol. Rev., Vol. 28, pp. 57-102.
Wu, W., Giese, R.F. and Van oss C.J., 1999, “Stability versus flocculation of particle suspensions in water-correlation with the extended DLVO approach for aqueous systems, compared with classical DLVOtheory,” Colloids and surfaces B: Biointerfaces, Vol. 14, pp. 47-55.
Yang, B.Y., and Feng, Y.H., 2004, “Progress on the behavior of tealeaf in catching metallic ions such as gold and silver contained in water,” GOLD, Vol. 25, pp. 43-50.
Yin, S.G., Chen, H.X. and Luo, X.P., 2006, “Gallium resources application and the studying situation on separation and abstraction technology,” Sichuan Nonferrous Metals, Vol. 2, pp. 24-28.
Yousuf, M., Mollah, A., Schennach, R., Parga, J.R. and Cocke, D.L., 2001, “Electrocoagulation (EC)-Science and Applications,” J. Hazard. Mater., Vol. 84, pp. 29-41.
Zhu, X.B. and Duan, X.C., 2008, “The present application and future development of indium,” Rare Metals and Cemented Carbides, Vol. 36, pp. 51-57.
Zou, J.Y. and Chen, S.H., 2002, “The current situation and outlook of scattered metals,” Engineering Science, Vol. 4, pp. 86-92.
陳英玲,2005,「茶葉的保健功效」,科學發展月刊,第391期,第66-73頁。
甘子能,1981,「茶中多元酚類成分」,食品工業,第13卷,第1期,第10-18頁。
黃銀雄,2005,「電子業廢棄鎵金屬回收之研究」,碩士論文,國立雲林科技大學環境與安全衛生工程系。雲林。
楊凱強,2008,「不同螯合劑對於超臨界二氧化碳去除高科技產業酸性廢液中銦、鎵之研究」,碩士論文,弘光科技大學職業安全與防災研究所。台中。
張雅婷,蕭庭哲,吳俊毅,2008,「銦金屬資源與目前資源化處理技術之探討」,資源與環境學術研討會論文集,花蓮,第291-300頁。
王偉,李慶輝,綜述,李剛,審校,2000,「銦及其化合物的毒性研究」,工業衛生與職業病,第26卷,第5期,第309-311頁。
楊萬發,2002,「水及廢水處理化學」,茂昌圖書有限公司,臺北。
施安琪,2002,「藻類存在對濁度混沉去除之影響」,碩士論文,國立交通大學環境工程研究所。新竹。
李坤峰,2001,「飲用水處理程序二階段添加PAC與污泥毯穩定度提昇之研究」,碩士論文,元智大學化學工程研究所。桃園。
王文成,2005,「以電聚浮除法處理半導體業廢水中之砷」,碩士論文,國立中興大學環境工程研究所。台中。
呂冠霖、高思懷,1997,「利用電聚浮除法處理染整工業區廢水之研究」,第二十二屆廢水處理技術研討會論文集,第561-568頁。
林爽秋,2005,「超臨界二氧化碳萃取中草藥及其萃出物對抑制黑色素生成之研究」,碩士論文,國立成功大學化學研究所。台南。
張家銘,2002,「利用固相微萃取結合高效能液相層析技術測定β-胡蘿蔔素」,碩士論文,朝陽科技大學應用化學系。台中。
蔡逸文,2006,「以薄膜技術處理隧道工程廢水」,碩士論文,國立臺灣科技大學化學工程系。台北。
曹惠玲,2006,「改質矽藻土對水中重金屬吸附特性之研究」,碩士論文,國立成功大學環境工程學系。台南。
郭桓志,2007,「異丁烷/烯烴烷化製程廢硫酸中有機物去除之研究」,碩士論文,國立雲林科技大學化學工程學系。雲林。
廖育嬋,2009,「以側鏈含乙醇胺之螯合樹脂吸附重金屬離子之研究」,碩士論文,南台科技大學化學工程與材枓工程系。台南。
賴怡伶,2008,「含纖維素之生物吸附劑對重金屬吸附之研究」,碩士論文,國立中央大學環境工程研究所。桃園。
鄭慶堂,2005,「以椰子纖維製備活性碳之研究」,碩士論文,國立屏東科技大學環境工程與科學系。屏東。
蔡明谷,2006,「研究電透析技術處理重金屬廢水之效率及其物化機制—以含銅廢水為例」,碩士論文,朝陽科技大學環境工程與管理系。台中。
楊叢印,2003,「結合電過濾/電透析技術處理CMP廢水並同步產製電解水之研究」,博士論文,國立中山大學環境工程研究所。高雄。
洪登彥,2009,「茶葉粉對水溶液中銅及鉛之吸附特性研究」,碩士論文,義守大學土木與生態工程學系。高雄。
黃凱裕,2010,「以電化學技術去除溶液中聚乙烯醇之研究」,碩士論文,弘光科技大學職業安全與防災研究所。台中。
尤建華,1984,「利用廢棄污泥研製吸附劑以去除有機溶劑蒸氣之可行性研究」,碩士論文,國立台灣大學環境工程研究所。台北。
蘇俞之,2008,「以電吸附技術回收工業廢水之研究」,碩士論文,國立雲林科技大學化學工程與材料工程系碩士班。雲林。
邱煥宗,2005,「奈米碳管吸附水中二價鋅離子之研究」,碩士論文,國立中興大學環境工程學系。台中。
廖士瑋,2009,「以花生殼灰吸附水溶液中鉛離子的研究」,碩士論文,國立台灣科技大學化學工程系。台北。
鍾孟佳,2005,「奈米碳管吸附水中腐植酸之研究」,碩士論文,國立中興大學環境工程學系。台中。
李佳欣,2004,「黃酸對錳砂吸附水中錳離子影響之探討」,碩士論文,國立中興大學環境工程學系。台中。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 【04】黃登淵,李輝煌,黃聖杰,楊秉茂,1997,“PMMA 壓克力材料兩階段射出成型界面結合強度與破裂之研究”,高雄科學技術學院學報,第27期,pp. 113- 130
2. 11.吳清山,2004,「學校創新經營理念與策略」,教師天地,128,頁30–44。
3. 2.王德睦、劉一龍,2008,台灣總生育率再分析—ACF法的運用,人口學刊,36, 頁37–65。
4. 19.范熾文,2004,「學校人力資源管理內涵之建構」,學校行政雙月刊,30,頁 1–14。
5. 36.劉仲成,2004,「教育市場化下學校經營的策略」,教育資料與研究,57,頁 45–49。
6. 35.楊巧玲,2000,課程與教學的社會學分析—三所小學教育實際之比較研究,教育學刊,16,頁193–209。
7. 33.黃能堂,2007,「台灣人口結構變遷對技職教育的衝擊與其因應」,教育資料與研究雙月刊,74期,頁97–114。
8. 16.林海清,2006,「少子化效應對技職教育發展之衝擊與因應策略」,教育研究月刊,151期,頁32–45。
9. 陳英玲,2005,「茶葉的保健功效」,科學發展月刊,第391期,第66-73頁。
10. 7.何金針,2003,「新世紀時代校長領導的省思」,學校行政理論與實務,頁 60–71。
11. 甘子能,1981,「茶中多元酚類成分」,食品工業,第13卷,第1期,第10-18頁。
12. 3.司徒達賢,1979,「台灣企業之環境分析」,企銀季刊,第三卷第一期,頁 27–38。
13. 【21】林明輝,2009,”IMD模內裝飾產業”, 工業材料雜誌271期
14. 37.蔡姿娟,2003,「學校選擇權在教育市場化下對義務教育的衝擊」,教育資料與研究,52,頁55–61。
15. 44.羅綸新,2007,台灣少子化現象對高等教育的衝擊與挑戰,教育資料與研究雙月刊,74,頁133–150。
 
系統版面圖檔 系統版面圖檔