跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/10 16:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝佩坊
研究生(外文):Pei-fang Hsieh
論文名稱:探討IL-7於腎近端小管細胞纖維化的角色
論文名稱(外文):The Role of IL-7 in Fibrosis Regulation of Renal Proximal Tubular Epithelial cells
指導教授:楊堉麟楊堉麟引用關係
指導教授(外文):Yu-Lin Yang
口試委員:蔡麗玉張榮賢
口試委員(外文):Li-Yu TsaiLong-Sen Chang
口試日期:2011-07-05
學位類別:碩士
校院名稱:中華醫事科技大學
系所名稱:生物醫學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:73
中文關鍵詞:高糖介白素7近端腎小管上皮細胞腎纖維化
外文關鍵詞:high glucoseIL-7Renal Proximal Tubular Epithelial cellsrenal fibrosis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:344
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
背景:在糖尿病腎病變造成的纖維化中,高血糖是一個重要的危險因子。先前的研究發現,IL-7具有抗肺纖維化的潛力。然而,IL-7在腎纖維化的過程扮演的角色未知。因此,我們想探討IL-7在腎近端小管上皮細胞高糖的環境下所扮演的角色。方法:細胞培養在高糖最終濃度為27.5 mM兩天,在最後24小時加入不同濃度的IL-7 (10、 50、100與 200 ng/ml)。利用ELISA來偵測細胞外分泌的纖維蛋白及乙型生長轉型因子濃度。再使用Western blot來觀察EMT的標記【包括α-smooth muscle actin ( α-SMA) 及 E-cadherin】,訊息傳遞,及EMT的啟動子( Snail, Slug )之表現。以及使用免疫螢光染色來觀察原位蛋白的表現(譬如Fibronectin, α-SMA, E-cadherin, Snail, Slug)。結果:我們發現IL-7抑制高糖誘導減少的細胞生長及抑制高糖誘導的細胞纖維化。並且IL-7能夠阻斷高糖誘導所升高的纖維蛋白,第一型乙型轉型生長因子,第一型乙型轉型生長因子接受器以及磷酸化Smad2/3。相反的,IL-7可以逆轉高糖所誘導減少的Smad7。除此之外,IL-7能夠抑制高糖所誘導增加的α-SMA, Snail及Slug,並且能逆轉高糖誘導減少的E-cadherin。結論:IL-7抑制高糖誘導的腎近端小管纖維化可能通過調節 Smads和EMT的途徑。
Background: Hyperglycemia is the most important risk factor in the progression of renal fibrosis in diabetic kidney. Based on previous studies, interleukin-7 (IL-7) may possess antifibrotic activities in pulmonary fibrosis model. However, the role of IL-7 in the pathogenesis of renal tubulointerstitial fibrosis remains unclear. Thus, we hereby elucidate the effects of IL-7 in cultured renal proximal tubular epithelial cells (designated as HK-2) treated under hyperglycemic media. Material and Methods: Cells were cultured in high glucose (HG, 27.5mM) for 2 days. Different concentration of IL-7 (10、 50、100 or 200ng/ml) was added in the last 24 hours of culture. ELISA was used to evaluate the secreted protein such as fibronectin and TGF-β1. Western blot was used to examine the EMT marker (including α-smooth muscle actin (α-SMA) and E-cadherin), signal transducer (including Smad Smad2/3 and Smad7) and EMT initiator (e.q Snail, Slug). Immunofluorescence staining was used to assay the in situ expression of proteins (e.q. α-SMA, E-cadherin and Snail). Results: We found that IL-7 significantly attenuated HG-inhibited cellular growth and HG-induced fibrosis. HG-induced up-regulation of fibronectin, TGF-β, TGF-β RII and p-smad2/3 was markedly inhibited by IL-7. On the contrary, HG-induced down-regulation of smad7 was significantly reversed by IL-7 instead. Moreover, IL-7 markedly inhibited HG-induced increase in α-smooth muscle actin and snail. Whereas HG-induced decrease in E-cadherin expression was reversed as well. Conclusion, IL-7 has the potential to inhibit high glucose-induced renal tubular fibrosis possibly by modulating Smads and EMT pathway.
口試委員會審定書…………………………………………………i
授權書…………………………………………………………...….ii
誌謝………………………………………………………………....iii
中文摘要……………………………………………...……………iv
英文摘要………………………………………………………...…v
縮寫表…………………………………………………………....…vi
第一章 緒論 1
一、糖尿病腎病變之盛行率 2
二、糖尿病腎臟纖維化之致病與機轉 3
三、腎臟纖維化與EMT過程之相關 6
四、高糖與糖尿病腎病變之關係 8
五、乙型轉型生長因子在糖尿病腎病變中扮演之角色………10
六、纖維化之訊息傳導路徑 ...13
七、白介素-7簡介 18
第二章 研究目的 22
第三章 材料與方法 24
一、試劑 25
二、方法 25
1. 細胞培養 26
( 1 ) 繼代細胞 26
( 2 ) 活化細胞 26
( 3 ) 細胞保存 27
2. 細胞數目 27
3. 酵素連結免疫吸附分析 ( ELISA ) 27
4. 免疫螢光分析 ( Immunofluorescence ) 28
5. 細胞蛋白質總量測定 28
6. 西方墨點分析 29
7. 統計分析 30
第四章 結果 31
一、IL-7對27.5 mM的D-glucose誘導纖維化情形下腎近端小管細胞生長的影響 ….. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...…32
二、IL-7對27.5 mM的D-glucose誘導纖維化情形下腎近端小管纖維蛋白的影響……………………………………………………32
三、IL-7減少27.5 mM的D-glucose誘導腎近端小管細胞外分泌TGF-β1.. .….….….….….….….….….….….….…..….….….…33
四、IL-7對27.5 mM的D-glucose誘導纖維化情形下腎近端小管細胞TGF-β1受器的影響……………………………………………34
五、IL-7對27.5 mM的D-glucose誘導下腎近端小管細胞Smad2/3, pSmad2/3, Smad4 以及 Smad7的影響………………...………34
六、IL-7抑制27.5 mM的D-glucose誘導下腎近端小管細胞胞內上皮型態的影響……………………………………………...…….35
七、IL-7對27.5 mM的D-glucose誘導下腎近端小管細胞於免疫螢光觀察上皮型態的影響……………………………………..…..36
八、IL-7抑制27.5 mM的D-glucose誘導下腎近端小管細胞纖維化的調控機制…………………………………………………....37
第五章 討論 …….38
第六章 結論 42
第七章 圖表 44
第八章 參考文獻 53

Abe J. 2006. Bone morphogenetic protein (BMP) family, SMAD signaling and Id helix–loop–helix proteins in the vasculature: The continuous mystery of BMPs pleotropic effects. Journal of molecular and cellular cardiology. 41:26–33.

Ahmed S, Nawshad A. 2007. Complexity in Interpretation of Embryonic Epithelial- Mesenchymal Transition in Response to Transforming Growth Factor-β Signaling. Cells Tissues Organs. 185:131–145.

Ahnfelt-Rønne J, Ravassard P, Pardanaud-Galvieux C, Scharfmann R, Serup P. 2010. Mesenchymal bone morphogenetic protein signaling is required for normal pancreas development. Diabetes. 59:1948–1956.

Alden TD, Varady P, Kallmes DF, Jane JA Jr, Helm GA. 2002. Bone morphogenetic protein gene therapy. Spine. 27:87–93.

Border WA, Noble NA. 1998. Evidence that TGF-beta should be a therapeutic target in diabetic nephropathy. Kidney international. 54:1390–1391.

Border WA, Noble NA. 1994. Transforming growth factor beta in tissue fibrosis. New England journal of medicine. 331:1286–1292.


Boutet A, De Frutos CA, Maxwell PH, Mayol MJ, Romero J, Nieto MA. 2006. Snail activation disrupts tissue homeostasis and induces fibrosis in the adult kidney. The EMBO Journal. 25:5603–5613.

Carvajal G, Droguett A, Burgos ME, Aros C, Ardiles L, Flores C, Carpio D, Ruiz-Ortega M, Egido J, Mezzano S. 2008. Gremlin: A Novel Mediator of Epithelial Mesenchymal Transition and Fibrosis in Chronic Allograft Nephropathy. Transplantation Proceedings. 40:734–739.

David Long1, Simon Blake2, Xiao-Yu Song2, Michael Lark2 and Richard F Loeser1 , Human articular chondrocytes produce IL-7 and respond to IL-7 with increased production of matrix metalloproteinase-13. Arthritis Research & Therapy 2008, 10:R23 10.1186/ar2376

Dajak M, Ignjatović S, Stojimirović B, Gajić S, Majkić-Singh N. 2010. Urinary beta-trace protein as a tubular marker of renal dysfunction in patients with chronic kidney disease. Clinica Chimica Acta. 411:1154–1155.

Dudas PL, Argentieri RL, Farrell FX. 2008. BMP-7 fails to attenuate TGF-β1-induced epithelial-to-mesenchymal transition in human proximal tubule epithelial cells. Nephrol Dial Transplant. 24:1406–16.

Evans AJ, Russell RC, Roche O, Burry TN, Fish JE, Chow VW, Kim WY, Saravanan A, Maynard MA, Gervais ML, Sufan RI, Roberts AM, Wilson LA, Betten M, Vandewalle C, Berx G, Marsden PA, Irwin MS, Teh BT, Jewett MA, Ohh M.. 2007. VHL Promotes E2 Box-Dependent E-Cadherin Transcription by HIF-Mediated Regulation of SIP1 and Snail. Molecular and Cellular Biology. 27:157–169.

Fedorova LV, Raju V, El-Okdi N, Shidyak A, Kennedy DJ, Vetteth S, Giovannucci DR, Bagrov AY, Fedorova OV, Shapiro JI, Malhotra D. 2009. The cardiotonic steroid hormone marinobufagenin induces renal fibrosis: implication of epithelial-to-mesenchymal transition. American journal of physiology. Renal physiology. 296:922–934.

Firrincieli D, Boissan M, Chignard N. 2010. Epithelial-mesenchymal transition in the liver. Gastroentérologie clinique et biologique.

Gordon KJ, Kirkbride KC, How T, Blobe GC. 2009. Bone morphogenetic proteins induce pancreatic cancer cell invasiveness through a Smad1-dependent mechanism that involves matrix metalloproteinase-2. Carcinogenesis. 30:238–248.

Grotegut S, von Schweinitz D, Christofori G, Lehembre F. 2006. Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. The EMBO Journal 25:3534–3545.


Heldin, C.H., Miyazono, K. and ten Dijke, P. 1997. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 390:465–471.

Hardy RG, Vicente-Dueñas C, González-Herrero I, Anderson C, Flores T, Hughes S, Tselepis C, Ross JA, Sánchez-García I. 2007. Snail Family Transcription Factors Are Implicated in Thyroid Carcinogenesis. The American Journal of Pathology. 171:1037–1046.

Hills CE, Al-Rasheed N, Al-Rasheed N, Willars GB, Brunskill NJ. 2009. C-peptide reverses TGF-β1-induced changes in renal proximal tubular cells: implications for treatment of diabetic nephropathy. American journal of physiology. Renal physiology. 296:614–621.

Hong KO, Kim JH, Hong JS, Yoon HJ, Lee JI, Hong SP, Hong SD. 2009. Inhibition of Akt activity induces the mesenchymal-to-epithelial reverting transition with restoring E-cadherin expression in KB and KOSCC-25B oral squamous cell carcinoma cells. Journal of Experimental & Clinical Cancer Research. 28:28.

Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG. 2002. Evidence that fibroblasts derive from epithelium during tissue fibrosis. The Journal of clinical investigation. 110:341-350.


Kelly J.Gordon, Kellye C.Kirkbride. 2010. Kidney Fibrosis. Journal of the American Society of Nephrology. 21: 212–222.

Khawam K, Giron-Michel J, Gu Y, Perier A, Giuliani M, Caignard A, Devocelle A, Ferrini S, Fabbi M, Charpentier B, Ludwig A, Chouaib S, Azzarone B, Eid P. 2009. Human Renal Cancer Cells Express a Novel Membrane-Bound Interleukin-15 that Induces, in Response to the Soluble Interleukin-15 Receptor α Chain, Epithelial-to-Mesenchymal Transition. Cancer Res. 69:1561–1569.

Leask A, Abraham DJ. 2004. TGF-beta signaling and the fibrotic response. The FASEB journal. 18:816–827.

Lee JM, Dedhar S, Kalluri R, Thompson EW. 2006. The epithelial mesenchymal transition: new insights in signaling, development, and disease. The Journal of cell biology. 172:973–981.

LeRoy EC, Trojanowska MI, Smith EA. 1990. Cytokines and human fibrosis. European cytokine network. 1:215–219.

Li R, Liang J, Ni S, Zhou T, Qing X, Li H, He W, Chen J, Li F, Zhuang Q, Qin B, Xu J, Li W, Yang J, Gan Y, Qin D, Feng S, Song H, Yang D, Zhang B, Zeng L, Lai L, Esteban MA, Pei D. 2010. A Mesenchymal to Epithelial Transition Initiates and Is Required for the Nuclear Reprogramming of Mouse Fibroblasts. Cell Stem Cell. 7:51–63.
Li X, Deng W, Nail CD, Bailey SK, Kraus MH, Ruppert JM, Lobo-Ruppert SM. 2006. Snail induction is an early response to Gli1 that determines the efficiency of epithelial transformation. Oncogene. 2:609–621.

Ling Zhang, Michael P. Keane, Li X. Zhu‡, Sherven Sharma, Enrique Rozengurt, Robert M. Strieter, Steven M. Dubinett , and Min Huang. Interleukin-7 and Transforming Growth Factor-beta Play Counter regulatory Roles in Protein Kinase C dependent Control of Fibroblast Collagen Synthesis in Pulmonary Fibrosis. JBC Papers in Press, May 7, 2004, DOI 10.1074/jbc.C400115200

Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA. 2008. The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells. Cell. 133:704–715.

Min-A Yu, Kyung-Sook Shin, Jung Hye Kim, Yong-Il Kim, Soon Sup Chung, Sun-Hee Park, Yong-Lim Kim, and Duk-Hee Kang. 2009. HGF and BMP-7 Ameliorate High Glucose–Induced Epithelial-to-Mesenchymal Transition of Peritoneal Mesothelium. Journal of the American Society of Nephrology. 20: 567–581.

Min Huang,1,2 Sherven Sharma,1,2 Li X. Zhu,1 Michael P. Keane,1 Jie Luo,1 Ling Zhang,1 Marie D. Burdick,1 Ying Q. Lin,1 Mariam Dohadwala,1 Brian Gardner,2 Raj K. Batra,1,2 Robert M. Strieter,1 and Steven M. Dubinett. IL-7 inhibits fibroblast TGF-β production and signaling in pulmonary fibrosis. J. Clin. Invest. 109:931–937 (2002). DOI:10.1172/JCI200214685.

Nakao A. 1997. TGF-β receptor-mediated signaling through Smad2, Smad3 and Smad4. EMBO. 16:5353–5362.

Nieto MA. 2008. Epithelial-Mesenchymal Transitions in development and disease: old views and new perspectives. The International journal of developmental biology. 53:1541–1547.

Olmeda D, Montes A, Moreno-Bueno G, Flores JM, Portillo F, Cano A. 2008. Snai1 and Snai2 collaborate on tumor growth and metastasis properties of mouse skin carcinoma cell lines. Oncogene. 27:4690–4701.

Olmeda D, Moreno-Bueno G, Flores JM, Fabra A, Portillo F, Cano A. 2007. SNAI1 Is Required for Tumor Growth and Lymph Node Metastasis of Human Breast Carcinoma MDA-MB-231 Cells. Cancer Research. 67:11721–11731.

Philip O, Gangwen H, Allen G. Li and Xiao-Jing W. 2008. The Role of Smads in Skin Development. The Journal of investigative dermatology. 128:783–79.

Radisky DC. 2005. Epithelial-mesenchymal transition. Journal of Cell Science. 118:4325–4326.

Schiller M, Javelaud D, Mauviel A. 2004. TGF-beta-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. Journal of dermatological science. 35:83–92.

Sharma K, Ziyadeh FN, Alzahabi B, McGowan TA, Kapoor S, Kurnik BR, Kurnik PB, Weisberg LS. 1997. Increased renal production of transforming growth factor-beta1 in patients with type II diabetes. Diabetes. 46:854–859.

Sharma K, Ziyadeh FN. 1994. The emerging role of transforming growth factor-β in kidney diseases. American journal of physiology. 266: 829–842.

Smith JP, Pozzi A, Dhawan P, Singh AB, Harris RC. 2009. Soluble HB-EGF Induces Epithelial-to-Mesenchymal Transition in Inner Medullary Collecting Duct Cells by Upregulating Snail-2. American journal of physiology. Renal physiology. 296:957–965.

Tan X, Li Y, Liu Y. 2006. Paricalcitol Attenuates Renal Interstitial Fibrosis in Obstructive Nephropathy. Journal of the American Society of Nephrology. 17: 3382–3393.
Thiery JP. 1984. Mechanisms of Cell Migration in the Vertebrate Embryo. Cell Differ. 15:1-15.

Xie XS, Yang M, Liu HC, Zuo C, Li HJ, Fan JM. 2008. Ginsenoside Rg1, a major active component isolated from Panax notoginseng, restrains tubular epithelial to myofibroblast transition in vitro. Journal of Ethnopharmacology 25;12:35–41.

Xu J, Lamouille S, Derynck R. 2009. TGF-beta-induced epithelial to mesenchymal transition. Cell Research. 19:156–172.

Xu Y, Wan J, Jiang D, Wu X. 2009. BMP-7 Blocks the Cyclosporine A Induced Epithelial-to-Mesenchymal Transition in Renal Tubular Epithelial Cells. Nephron Exp Nephrol.114:23–31.

Yang F, Huang XR, Chung AC, Hou CC, Lai KN, Lan HY. 2010. Essential role for Smad3 in angiotensin II-induced tubular epithelial-mesenchymal transition. The Journal of pathology. 221:390–401.

Yang YL, Liu YS, Chuang LY, Guh JY, Lee TC, Liao TN, Hung MY, Chiang TA. 2009. Bone Morphogenetic Protein-2 Antagonizes Renal Interstitial Fibrosis by Promoting Catabolism of Type I Transforming Growth Factor-β Receptors. Endocrinology. 150:727–740.

Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F, Kalluri R. 2003. BMP-7 counteracts TGF-beta1-induced epithelial to mesenchymal transition and reverses chronic renal injury. Nature medicine. 9:964–968.

Zeisberg M, Kalluri R. 2004. The role of epithelial-to-mesenchymal transition in renal fibrosis. Journal of molecular medicine. 82:175–81.

Zhang Y, Feng X, We R, Derynck R. 1997. Receptor-associated Mad homologues synergize as effectors of the TGF-beta response. Nature. 383:168–72.

Zvaifler NJ. 2006. Relevance of the stroma and epithelial-mesenchymal transition (EMT) for the rheumatic diseases. Arthritis Research & Therapy. 8:210.




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top