跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/23 23:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡承霖
研究生(外文):Cheng-Lin Tsai
論文名稱:直接甲酸燃料電池 Pd-Cu/C 奈米陽極觸媒之研究
論文名稱(外文):Pd-Cu/C Anodic Catalysts For Formic Acid Electro-oxidation
指導教授:王振熙
指導教授(外文):Jen-Shi Wang
學位類別:碩士
校院名稱:義守大學
系所名稱:生物技術與化學工程研究所碩士班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:122
中文關鍵詞:Cu觸媒直接甲酸燃料電池化學還原法電氧化甲酸
外文關鍵詞:Electro-oxidationDFAFCsFormic AcidChemical Reduction MethodCu CatalystsPd
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1355
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究在直接甲酸燃料電池(direct formic acid fuel cells, DFAFCs)利用化學還原法製備Pdx-Cuy奈米微粒,擔載在碳黑上製備甲酸燃料電池陽極觸媒。在直接甲酸燃料電池中,雖然Cu金屬觸媒在氧化甲酸中沒有電催化活性,但運用搭配最佳比例Pdx-Cuy/C奈米合金製備碳黑擔載觸媒,以其氧化甲酸可以發現其電觸媒活性比單金屬Pd擔載在碳黑觸媒還要高。
利用電化學分析(循環伏安、計時安培、CO-stripping、氫氣電吸附、陽極極化)等方法,系統地證明運用所製備的Pdx-Cuy/C觸媒,可使甲酸電氧化有著不錯的成效。Pd5-Cu/C觸媒電氧化甲酸其峰電位比起Pd/C觸媒電極可負向偏移40 mV,且峰電流密度高於Pd/C觸媒,顯示證明Pd5-Cu/C的觸媒有著優異的活性。研究結果證實適度添加Cu於Pd/C觸媒可降低CO吸附能力,進而提昇其氧化甲酸時的直接路徑。
運用XRD與TEM鑑定證明其Pdx-Cuy合金為fcc的結構,計算其平均粒徑,可以發現所製備的Pdx-Cuy/C觸媒粒徑非常小,有利其電觸媒活性。
This research is undertaken for the first time to synthesize carbon-supported Pdx-Cuy catalysts through chemical reduction method for the direct formic acid fuel cells (DFAFCs). Electrocatalytic activities of the carbon-supported Pdx-Cuy catalysts with suitable atomic ratio of Pd and Cu for the oxidation of formic acid are better than that of the Pd/C catalyst, although Cu catalysts has no electrocatalytic activity for formic acid.
Electrochemical tests, such as cyclic voltammetr (CV), chronoamperometry (CA), CO-stripping, hydrogen electroadsorption and galvanostatic polarization showed that the synthesized Pdx-Cuy/C catalysts displayed excellent electrocatalytic activity. The anodic peak potentials of the Pd5-Cu/C catalyst with the atomic ratio of Pd:Cu = 5:1 is 40 mV more negative than that of the Pd-Cu/C catalyst, and still exhibits comparable or better peak current density and anodic polarization. The enhancement of activity is attributed to the suitable addition of Cu which can promote the electro-oxidation of formic acid through direct pathway by decreasing the adsorption strength of CO.
XRD and TEM characterization of Pdx-Cuy/C catalysts demonstrated that Pdx-Cuy alloys were formed, resulting in face-centered cubic (fcc) crystalline structure and nano-sized crystallites.
中文摘要Ⅰ
英文摘Ⅱ
誌謝Ⅲ
目錄Ⅵ
圖目錄Ⅶ
表目錄Ⅹ
第一章 緒論1
1.1 前言1
1.2 燃料電池之簡介3
1.3 直接甲醇燃料電池【6】8
1.4 直接甲酸燃料電池(Direct Formic Acid Fuel Cell, DFAFC)【11】13
1.5 陽極觸媒電氧化甲酸(Anodic catalysts for formic acid electro-oxidation)16
1.5.1 Pt/C觸媒16
1.5.2 Pt-M觸媒17
1.5.3 Pd/C觸媒與Pd-M/C觸媒18
1.6 化學還原法之優點【25】19
1.7 研究動機與目的21
第二章 實驗原理23
2.1 觸媒製備方式之簡述23
2.2 以化學還原法系統製備奈米粒子25
2.2.1 化學還原法概論【38】25
2.2.2 以化學還原法系統製備奈米粒子【41】【42】28
2.3 電化學反應系統簡介【43】31
2.4 循環伏安法【44】33
2.5 電化學活性表面積(Electrochemical active area)37
2.6 電化學氧化甲酸(Electrochemical oxidation of fomic acid)42
2.7 X-光繞射分析(X-Ray Diffraction, XRD)基本原理44
2.8 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM)基本原理48
第三章 實驗方法52
3.1 實驗藥品52
3.2 實驗儀器53
3.3 實驗樣品製備54
3.3.1 製備20wt% Cu擔載在碳黑(Vulcan XC-72)觸媒54
3.3.2 製備20wt% Pd擔載在碳黑(Vulcan XC-72)觸媒55
3.3.3 製備20wt% Pd-Cu擔載在碳黑(Vulcan XC-72)觸媒56
3.3.4 製備20wt% Pd3-Cu擔載在碳黑(Vulcan XC-72)觸媒57
3.3.5 製備20wt% Pd5-Cu擔載在碳黑(Vulcan XC-72)觸媒58
3.4 實驗步驟59
3.4.1 電化學循環伏安法(Cyclic Voltammetry, CV)測試59
3.4.2 電化學計時安培法(Chronoamperometry, CA)測試60
3.4.3 CO-Stripping測試61
3.4.4 氫氣電吸附法(Hydrogen electroadsorption)測試62
3.4.5 陽極極化曲線測試63
3.4.6 XRD樣品製備與測試64
3.4.7 TEM樣品製備與測試65
第四章 實驗結果與討論66
4.1 化學還原法-奈米粒子陽極觸媒製程探討66
4.2 觸媒之循環伏安法(CV)活性探討68
4.3 觸媒之計時安培法(CA)穩定電流測試75
4.4 以CO-stripping探討觸媒抗CO毒化之能力78
4.5 氫氣電吸附法測試觸媒之電化學活性面積84
4.6 陽極極化曲線討論89
4.7 XRD圖譜分析91
4.8 TEM影像分析97
第五章 結論103
參考文獻106
圖目錄
圖 1.1 燃料電池雛形【2】。3
圖 1.2 直接甲醇燃料電池發電原理示意圖【7】。8
圖 1.3 直接甲醇燃料電池結構 【8】。9
圖 1.4 Nafion結構式【9】。11
圖 2.1 由化學還原法形成奈米金屬膠體粒子之示意圖【39】。26
圖 2.2 循環伏安法電位與時間之關係圖。33
圖 2.3 計時安培法(CA)其參數設定電位與時間之示意圖。35
圖 2.4 計時電位法(CP)其參數設定電流與時間之示意圖。35
圖 2.5 循環伏安法測試裝置。36
圖 2.6 Cyclic voltammograms (10 mV s-1) at 25℃on Pt/C (ETEK) in the potential range 0–1400 mV vs.NHE. Q’and Q”represent the amount of charge exchanged during the electro-adsorption and desorption of H2 on Pt sites and the fill area is the contribution of double layer charge.【53】38
圖 2.7 Hydrogen electrosorption voltammetric profiles for PtRu/C catalysts in 1 M H2SO4 with a scan rate of 50 mV/s at room temperature. The hatched area represents the amount of charge of the of the electrosorption of hydrogen on Pt【47】39
圖 2.8 Series of CV profiles for Pd(poly) in 0.5M aqueous H2SO4 solution.39
圖 2.9 Pd-Si electrode in 0.5M H2SO4 at different initialpotential(RHE).【48】40
圖 2.10 Bragg’s Equation之示意圖。44
圖 2.11 XRD作用原理之簡單示意圖。46
圖 2.12 光學顯微鏡(左)與穿透式電子顯微鏡(右)構造示意圖。49
圖 2.13 光學顯微鏡(左)與穿透式電子顯微鏡(右)構造示意圖。49
圖 4.1 Pdx-Cuy/C陽極觸媒製程表。67
圖 4.2 Xin Wang 【17】利用化學還原法製備Pd-Ir/C。70
圖 4.3 Cu/C 之CV圖譜。71
圖 4.4 Pd/C 之CV圖譜。71
圖 4.5 Pd-Cu/C 之CV圖譜。72
圖 4.6 Pd3-Cu/C 之CV圖譜。72
圖 4.7 Pd5-Cu/C 之CV圖譜。73
圖 4.8 不同比例Pdx-Cuy/C 之CV氧化曲線圖譜。73
圖 4.9 不同比例Pdx-Cuy/C 之CA圖譜。76
圖 4.10 Cu/C 之CO-Stripping 圖譜。80
圖 4.11 Pd/C 之CO-Stripping 圖譜。80
圖 4.12 Pd-Cu/C 之CO-Stripping圖譜。81
圖 4.13 Pd3-Cu/C 之CO-Stripping圖譜。81
圖 4.14 Pd5-Cu/C 之CO-Stripping 圖譜。82
圖 4.15 不同比例Pdx-Cuy/C 之CO-stripping氧化曲線圖譜。82
圖 4.16 Cu/C之CV圖(以氫氣電吸附法)。85
圖 4.17 Pd/C之CV圖(以氫氣電吸附法)。85
圖 4.18 Pd-Cu/C之CV圖(以氫氣電吸附法)。86
圖 4.19 Pd3-Cu/C之CV圖(以氫氣電吸附法)。86
圖 4.20 Pd5-Cu/C之CV圖(以氫氣電吸附法)。87
圖 4.21 不同比例Pdx-Cuy/C 之CV圖(以氫氣電吸附法)。87
圖 4.22 不同比例Pdx-Cuy/C之陽極極化曲線圖譜。90
圖 4.23 不同比例Pdx-Cuy/C之XRD圖 。93
圖 4.24 Pd/C (a)TEM圖形, (b)粒徑分佈。98
圖 4.25 Pd-Cu/C (a)TEM圖形, (b)粒徑分佈。99
圖 4.26 Pd3-Cu/C (a)TEM圖形, (b)粒徑分佈。100
圖 4.27 Pd5-Cu/C (a)TEM圖形, (b)粒徑分佈。101
表目錄
表1.1 各種燃料電池特徵、用途與優缺點【5】。7
表1.2 不同金屬離子之還原條件【40】。41
表4.1 不同比例Pdx-Cuy/C 之CV結果分析。74
表4.2 不同比例Pdx-Cuy/C 之CA結果分析。77
表4.3 不同比例Pdx-Cuy/C 之CO-stripping結果分析。83
表4.4 不同比例Pdx-Cuy/C 之CV (以氫氣電吸附法)之結果分析。88
表4.5 以XRD測得之觸媒不同方向特徵峰之角度。94
表4.6 以XRD測得之觸媒粒徑。95
表4.7 以XRD測得之觸媒不同方向晶格参數。96
表4.8 以TEM測得之觸媒粒徑。102
中文部份
[1]王鉦源,“以化學還原法製備奈米級銀鈀微粉”,國立成功大學化學工程系博士論文, (2002).
[2]吳重瑩,“逆微胞法製備直接甲酸燃料電池Pd-Ir/C奈米陽極觸媒之研究 ”,義守大學生物技術與化學工程系碩士論文, (2009).
[3]李瑛 王林山 編譯, “燃料電池” ,冶金工業出版社,(2002).
[4]李裕翔,“利用微波法製備醇燃料電池 Pt-Sn奈米陽極觸媒材料之研究”,義守大學生物技術與化學工程系碩士論文, (2008).
[5]林育右,“以化學還原法合成導電性銅奈米微粉之研究”,國立成功大學化學工程系博士論文, (2003).
[6]林昇佃 合編譯, “燃料電池新世紀能源” ,滄海書局股份有限公司,(2005).
[7]侯鎮球,“利用化學與電化學還原法製備銀奈米粒子”,國立中正大學化學工程系博士論文, (2006).
[8]胡啟章著,“電化學原理與方法” ,五南出版社,(2002).
[9]馬成九編譯, “燃料電池(札記)” ,三民書局股份有限公司, (2008).
[10]馬振基編譯, “奈米材料科技原理與應用” ,全華科技圖書有限公司, (2005).
[11]高漢昌, ” 利用逆微胞法製備直接甲醇燃料電池PtRu奈米陽極觸媒之研究”,義守大學生物技術與化學工程系碩士論文, (2006).
[12]莊浩宇,“二氧化鈦奈米粒子及其金屬核殼型奈米複合材料之製備與應用研究”,國立成功大學化學工程系博士論文, (2009).
[13]陳德蔭、林昇佃,“PEFC 燃料電池電極觸媒的分析”, 化工技術第10 卷第6期, pp.186, (2002).
[14]陳德蔭、林昇佃、張美元, “ PEFC 燃料電池電極觸媒的分析 ”化工技術第 10 卷第 6 期, pp.186-210,(2002).
[15]陸天弘,“直接甲酸燃料電池的優越性”,電池工業第12卷第6 期,(2007).
[16]黃鎮江,燃料電池,全華科計圖書股份有限公司,(2003) .
[17]溫武義編譯, “燃料電池技術” ,全華科技圖書股份有限公司,(2004).
[18]葉長青, “直接甲醇燃料電池奈米鉑基雙金屬陽極觸媒材料之研究”,義守大學生物技術與化學工程系碩士論文, (2005).
[19]葉瑞銘編譯, “奈米科技導論” ,高立圖書有限公司,(2004).
[20]蔡克群, “燃料電池導論” ,化工技術第10卷第6期,pp.122-131,(2002).
英文部份
[1]A. J. Dickinson, L. P. L. Carrette, J. A. Collins, K. A. Friedrich, U. Stimming, “Performance of methanol oxidation catalysts with varying Pt:Ru ratio as a function of temperature”, J.Appl.Electrochemistry, Vol. 34, pp.975, (2004).
[2]A. N. Correia, L. H. Mascara, S. A. S. Machado and L. A. Avaca, “ Active surface area determination of Pd-Si alloys by H-adsorption,” Electrochimica Acta , vol. 42, pp. 493-495, (1997).
[3]A.O. Neto, T.R.R. Vasconcelos, R. Silva, M. Linardi, E. Spinace, Electro-oxidation of ethylene glycol on PtRu/C and PtSn/C electrocatalysts prepared by cohol-reduction process”, J.Appl Electrochemistry, Vol. 35, pp.193,(2005).
[4]A.Pozio, M. De Francesco, A. Cemmi, F. Cardellini, L.Giorgi, “ Comparison of high surface Pt/C catalysts by cyclic voltammetry,” Journal of Power Sources , vol. 105, pp. 13-19, (2002).
[5]C. S. Lin, M. R. Khan, S. D. Lin, “The preparation of Pt nanoparticles by methanol and citrate”, J.Colloid and Interface Science, Vol. 299, pp.678, (2006).
[6]Goia, D. V.; Matijevic, E. New J. Chem. 22, 1203. (1998)
[7]Hong Wang, Changwei Xu, Faliang Cheng, Sanping Jiang ,“ Pd nanowire arrays as electrocatalysts for ethanol electrooxidation,” Electrochemistry Communications , vol. 9, pp. 1212-1216, (2007).
[8]Huanqiao Li, Gongquan Sun, Qian Jiang, Mingyuan Zhu,higuo Sun, Qin Xin , “ Synthesis of highly dispersed Pd/C electro-catalyst with high activity for formic acid oxidation,” Electrochemistry Communications , vol. 9, pp. 1410-1415, (2007).
[9]J. M. Petroski, Z. L. Wang, T. C. Green, M. A. El-Sayed, J. Phys. chem., Vol. 102, pp.3316, (1998).
[10]J.B. Xu, T.S. Zhao, Z.X. Liang, “Carbon supported platinum–gold alloy catalyst for direct formic acid fuel cells,” Journal of Power Sources , vol. 185, pp. 857-861, (2008).
[11]James Larminie and Andrew Dicks, “ Fuel Cell Systems Explained ”2nd ed, Wiley, (2003).
[12]K. Sundmacher, K. Scott, “Direct methanol polymer electrolyte fuel cell: analysis of charge and mass transfer in the vapour-liquid-solid system”, Chemical Engineering Sciense, Vol. 54, pp.2927, (1999).
[13]Lingling Zhang ,Tianhong Lu, Jianchun Bao, Yawen Tang, Cun Li , Preparation method of an ultrafine carbon supported Pd catalyst as an anodic catalyst in a direct formic acid fuel cell,” Electrochemistry Communications , vol. 8, pp. 1625-1627, (2006).
[14]Lingling Zhang ,Yawen Tang, Jianchun Bao, Tianhong Lu, Cun Li ,“ A carbon- supported Pd-P catalyst as the anodic catalyst in a direct formic acid fuel cell,” Journal of Power Sources , vol. 162, pp. 177-179, (2006).
[15]M. Tsuji, M. Kubokawa, R. Yano, N. Miyamae, T. Tsuju, M-S Jun, S. Hong, S.Lim, S-H Yoon, I.Mochida,“Fast Preparation of PtRu Catalysts Supported on Carbon Nanofibers by the Microwave-Polyol Method and Their Application to Fuel Cells”, Langmuir, Vol. 23, pp.387, (2007).
[16]Michal Grden, Mariusz ukaszewski, Gregory Jerkiewiczb, Andrzej Czerwinskia ,“ Electrochemical behaviour of palladium electrode: Oxidation, electrodissolution and ionic adsorption,”Elecrrochimica Acta , vol. 53, pp. 7583-7598, (2008).
[17]N. M. Markovic and P. N. Ross, Jr, “Surface science studies of model fuel cell electrocatalysts”, Surface Science, Vol. 45, pp.117, (2002).
[18]Piotr Waszczuk, Thomas M. Barnard, Cynthia Rice, Richard I. Masel,Andrzej Wieckowski, “ A nanoparticle catalyst with superior activity for electrooxidation of formic acid,” Electrochemistry Communications , vol. 4, pp. 599 -603, (2002).
[19]Qinggang He,Wei Chen, Sanjeev Mukerjee, Shaowei Chen, Frantisek Laufek, “ Carbon-supported PdM (M=Au and Sn) nanocatalysts for the electrooxidation of ethanol in high pH media,” Journal of Power Sources , vol. 187, pp. 298-304, (2009).
[20]Robert Larsen, Su Ha, Joseph Zakzeski, Richard I. Masel, “ Unusually active palladium-based catalysts for the electrooxidation of formic acid,” Journal of Power Sources, vol. 157, pp. 78-84 , (2006).
[21]Rongfang Wang , Shijun Liao , Shan Ji , “ High performance Pd-based catalysts for oxidation of formic acid,” Journal of Power Sources , vol. 180, pp. 205-208 , (2008).
[22]S. A. Campbell, D. P. Wilkinson, M. Davis, J. St-Pierre, and M. C. Johnson, “ Low Cost Electrodes for Proton Exchange Membrane Fuel Cells,” Journal of Electrochemical Society , vol. 144, pp. 11, (1997).
[23]S.A. Grigoriev, P. Millet , V.N. Fateev, “ Evaluation of carbon-supported Pt and Pd nanoparticles for the hydrogen evolution reaction in PEM water electrolysers (DFAFC),” Journal of Power Sources , vol. 177, pp. 281-285, (2008).
[24]Song, Y. Wang, P. K .Shen, “Pulse-microwave assisted polyol synthesis of highly dispersed high loading Pt/C electrocatalyst for oxygen reduction reaction”, J.Power Sources, Vol. 170, pp.46, (2007).
[25]T.Frelink, W. Visscher, J. A. R. Van Veen, “On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt”, Surface Science, Vol. 335, pp.353, (1995).
[26]Turkevich, J. ; Kirn, G. Science 169, 870. (1970)
[27]V. Radmilović, H. A. Gasteiger, P. N. Ross Jr, “ Surface and chemical composition of a supported Pt-Ru lectrocatalyst for methanol oxidation,” Journal of atalysis , vol. 154, pp. 98, (1995).
[28]W. J. Zhou, W. Z. Li, S. Q. Song, Z. H. Zhou, L. H. Jiang, G. Q. Sun, Q. Xin, K.Poulianitis, S. Kontou, P. Tsiakaras, “Bi-and tri-metallic Pt-based anode catalysts for direct ethanol fuel cells”, J.Power Sources, Vol. 131, pp.217, (2004).
[29]W. X. Chen, J. Y. Lee and Z. Liu, “Microwave- assisted synthesis of carbon supported Pt nanoparticles for fuel cell applications”, Chem.Commun, pp.2588, (2002).
[30]Wei-Xiang Chen, J. Y. Lee, Z. Liu, “Preparation of Pt and PtRu nanoparticles supported on carbon anotubes by microwave-assisted heating polyol process”, Materials Letters, Vol. 58, pp.3166, (2004).
[31]X. Li, Wei-Xiang Chen, J. Zhao, W. Xing, Zhu-De Xu, “Microwave polyol synthesis of Pt/CNTs Catalysts:Effects of pH on particle size and electrocatalytic activity for methanol electrooxidization”, Carbon , Vol. 43, pp.2168, (2005).
[32]Xiaoming Wang, Yongyao Xia , “ Electrocatalytic performance of PdCo-C catalyst for formic acid oxidation,” Electrochemistry Communications , vol. 10, pp. 1644-1646, (2008).
[33]Xin Wang ,Yawen Tang, Ying Gao, Tianhong Lu, “ Carbon- supported Pd–Ir catalyst as anodic catalyst in direct formic acid fuel cell,”Journal of Power Sources, vol. 175, pp. 784-788, (2008).
[34]Xingwen Yu, Peter G. Pickup, “Recent Advances in Direct Formic Acid Fuel Cells(DFAFC),” Journal of Power Sources, vol. 182, pp. 124-132, (2008).
[35]Y. Guo, Y. Zheng, M. Huang, “Enhanced activity of PtSn/C anodic electrocatalyst prepared by formic acid reduction for direct ethanol fuel cells”, Electrochimica Acta, vol. 53, pp.3102, (2008).
[36]Yicheng Liu, Xinping Qiu, Zhenguo Chen, Wentao Zhu,“A new supported catalyst for methanol oxidation prepared by a reverse micelles method, ”Electrochemistry Communications ,vol. 4, pp. 550-553,(2002).
[37]Z. Liu, J. Y. Lee, M. Han, W. Chen, L. M. Gan, “Synthesis and Characterization of PtRu/C catalysts form microemulsions and emulsions”, J.Mater.Chem, Vol. 12,pp.2453, (2002).
[38]Z. Zhou, W. Zhou, S. Wang, G. Wang, L. Jiang, H. Li, G. Sun, Q. Xin, “Preparation of highly active 40 wt% Pt/C cathode electrocatalysts for DMFC via different routes”, Catalysis Today, Vol. 93, pp.523, (2004).
[39]Zhaolin Liu, Jim Yang Lee, Weixiang Chen, Ming Han and Leong Ming Gan, “ Physical and electrochemical characterization of microwave-assisted polyol preparation of carbon-supported PtRu nanoparticles,”Langmuir , vol. 20, pp. 181-187, (2004).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top