跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/19 13:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陸博勛
研究生(外文):Po-Hsun Lu
論文名稱:利用分子模版固定化衣藻電極運用於微小化微生物燃料電池
論文名稱(外文):The Microcontact Imprinting of Chlamydomonas Reinhardtii on Poly(ethylene-co-vinyl alcohol) Electrode for the Microbial Fuel Cells
指導教授:林宏殷李玫樺
指導教授(外文):Hung-Yin LinMei-Hwa Lee
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:91
中文關鍵詞:分子模版微生物燃料電池萊茵衣藻乙烯-乙烯醇共聚合物
外文關鍵詞:Microbial Fuel CellMolecular Imprinting polymersPoly(Ethylene-Co-Vinyl Alcohol)Chlamydomonas Reinhardtii
相關次數:
  • 被引用被引用:0
  • 點閱點閱:649
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著生活品質的提高相對的能源的需求量逐漸增加,找尋綠色能源來使用成為新的世界性議題。部分微生物(例如綠藻和細菌)可以藉由進行光合作用產生氫氣。衣藻結合微生物燃料電池具有製程簡單、成本低、可以吸收溫室氣體CO2 轉換成養分且不拘限地域條件可直接將產生的氫氣轉換成電的優點。利用38mol%的乙烯-乙烯醇共聚合物(poly(ethylene-co-vinyl alcohol), EVAL)以微接觸法製備分子模版具有較佳的吸附效率4.76,藉由場發射電子顯微鏡觀察在電極上的分子模版表面形成具有衣藻樣貌的孔洞,藉由分子模版與目標分子互補的特點,達到固定化(Immobilization)的效果。透過微流體(Microfluidic)技術和分子模版(Molecular imprinting polymers,MIPs)製備分子模版電極結合微生物燃料電池以減少電池體積和增加電池的工作效率。
本研究探討乙烯-乙烯醇共聚合物對於再吸附衣藻的影響利用螢光光譜儀探討吸附量和利用X 射線能量散佈分析儀觀察表面成分分析,最後將衣藻附著於具有固定化特點的分子模版電極置入微生物燃料電池以電化學分析儀測定電壓變化。
Energy demand were increased with the improvement of quality of life, looked for the green energy was impartment agenda in the world. Several microorganisms such as green algae, cyanobateria heterocystous, cyanbacteria nonheterocystous and photo-synthetic bacteria were cultured to generate hydrogen gas. The advantages of the Chlamydomonas reinhardtii microbial fuel cell include simple structure, low cost, transformation of carbon dioxide into nutrients and unconfined place. 38mol% Poly(ethylene-co-vinyl alcohol), EVAL, is employed to imprint algae and the higher adsorption ability was 4.76. The algae-imprinted electrode has the ability to adsorb Chlamydomonas reinhardtii. Fabrication of molecular imprinting polymers and microfluidic microbial fuel cell may reduce the size of fuel cells and then enhance the efficiency.
In this study, discussions of EVAL mole% affected algae adsorption in fluorescence luminescence spectrometer, surface composition in energy dispersive spectrometer and output voltage of the algae-imprinted electrode in microbial fuel cell is measured.
中文摘要I
英文摘要II
誌謝III
總目錄IV
表目錄VII
圖目錄VIII
第一章 前言1
1.1 研究背景1
1.2 研究動機1
1.3 論文概論2
第二章 文獻回顧3
2.1 微生物燃料電池簡介3
2.1.1 微生物電池原理6
2.2 衣藻簡介11
2.3 分子模版技術(Molecular Imprinted Technology)16
2.3.1 分子模版技術概述16
2.3.2 分子模版起源與發展16
2.3.3 分子模版原理18
2.3.4 分子模版辨識目標物因素19
2.3.5 吸附理論21
2.3.5.1等溫吸附模式21
2.3.6 分子模版應用 23
2.4 聚乙烯乙烯醇(Poly(ethylene-co-vinyl alcohol)EVAL)25
2.4.1 聚乙烯乙烯醇結構及原理25
2.4.2 相轉換理論與機制25
第三章 實驗儀器與步驟29
3.1 實驗藥品與儀器 29
3.1.1 實驗藥品29
3.1.2 實驗儀器30
3.2 實驗方法與步驟31
3.2.1 衣藻培養步驟31
3.2.2 拓印基版清洗步驟33
3.2.3 製備分子拓印基版33
3.2.3.1 分子拓印溶液配製方法33
3.2.3.2 分子拓印薄膜製作再吸附與量測33
3.2.4 分子拓印模版薄膜性質研究36
3.2.4.1 螢光光譜儀(Fluorescence Luminescence Spectrometer)36
3.2.4.2 掃描式電子顯微鏡和X-射線能量散佈分析儀38
3.3 生物燃料電池電化學分析實驗42
3.3.1 生物燃料電池組裝42
3.3.2 製備微小化微生物燃料電池42
3.3.2.1 電極製作45
3.3.2.2 腔體製作45
3.3.2.3 電池封裝46
第四章 實驗結果與討論48
4.1 衣藻培養及生長曲線48
4.2 衣藻拓印高分子薄膜之表面結構研究51
4.2.1 不同乙烯比例的拓印薄膜對於衣藻之吸附性51
4.2.2 不同吸附時間對於拓印模版薄膜的影響54
4.2.3 不同吸附濃度對於拓印薄膜的影響54
4.2.4 衣藻拓印薄膜之吸附動力分析57
4.2.5 拓印薄膜重複性之影響60
4.3 衣藻拓印高分子薄膜性質研究62
4.3.1 衣藻拓印薄膜表面型態62
4.3.2 衣藻拓印薄膜表面成分分析66
4.3.3 衣藻螢光光譜分析66
4.4 生物燃料電池66
4.4.1 衣藻濃度對於生物燃料電池之影響69
4.4.2 衣藻拓印高分子薄膜對於生物燃料電池之影響69
4.4.3 微小型生物燃料電池量測72
第五章 結論74
參考文獻76
作者簡介83
表目錄
表2-1 燃料電池的分類及操作溫度7
表2-2 微生物燃料電池10
表2-3 分子模版與目標分子鍵結形式20
表2-4 分子拓印模版的應用24
表3-1 特徵X射線分析法的比較41
表4-1 衣藻拓印模版薄膜對衣藻的吸附量53
表4-2 衣藻拓印模版之吸附動力分析59
表4-3 衣藻拓印高分子薄膜再吸附後元素分析67
圖目錄
圖2-1 Potter的微生物燃料電池設計4
圖2-2 Korneel的微生物燃料電池構造圖5
圖2-3 微生物燃料電池構造圖8
圖2-4 植物體內光合作用的機制12
圖2-5 氫化酵素(hydrogenase)的產氫機制13
圖2-6 氫化酵素的結構圖15
圖2-7 Pauling所提出的分子互補性行為示意圖17
圖2-8 聚乙烯乙烯醇結構式26
圖2-9 固化成膜之三元相圖27
圖3-1 衣藻培養照片32
圖3-2 製備分子拓印模版,以及再吸附與量測示意圖35
圖3-3 Hitachi F-7000螢光光譜儀37
圖3-4 Hitachi S-4700掃描式電子顯微鏡40
圖3-5 生物燃料電池照片43
圖3-6 微小化微生物燃料電池44
圖3-7 PDMS進行氧電漿示意圖47
圖4-1 不同衣藻接種濃度的生長曲線圖49
圖4-2 使用透氣矽膠塞培養衣藻生長曲線圖50
圖4-3 四種乙烯莫耳比例衣藻拓印模版薄膜對衣藻之再吸附量52
圖4-4 衣藻拓印薄膜在不同吸附時間之吸附曲線55
圖4-5 衣藻拓印薄膜在不同吸附濃度之吸附曲線56
圖4-6 衣藻拓印高分子薄膜吸附動力分析58
圖4-7 衣藻高分子拓印重複進行再吸附測試61
圖4-8 不同衣藻拓印濃度拓印高分子薄膜斷面圖63
圖4-91 衣藻拓印模版薄膜掃描式電子顯微鏡影像圖64
圖4-10 衣藻拓印高分子薄膜再吸附後元素分析位置圖66
圖4-11 衣藻螢光光譜分析68
圖4-12 衣藻燃料電池長時間下電壓變化70
圖4-13 衣藻拓印高分子薄膜電極量測結果71
圖4-14 微小型衣藻燃料電池長時間電壓變化73
中文部份
[1]王釿鋊,綠藻產氫技術發展,清潔生產與環保技術e報,2002年。
英文部份
[1]A. Bossi, F. Bonini, A. P. F. Turner and S. A. Piletsky, “Molecularly imprinted polymers for the recognition of proteins: The state of the art”, Biosensors and Bioelectronics, vol.22, 2007, pp.1131-1137.
[2]A. Cambrosio, D. Jacobi and P. Keating, “Arguing with Images: Pauling''s Theory of Antibody Formation”, Representations, vol.89, 2005, pp.94-130.
[3]A. Melis and T. Happe, “Hydrogen Production. Green Algae as a Source of Energy”, Plant Physiology, vol.127, 2001, pp.740-748.
[4]B. E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete and K. Rabaey, “Microbial Fuel Cells:  Methodology and Technology”, Environmental Science & Technology, vol.40, 2006, pp.5181-5192.
[5]B. H. Kim, H. S. Park, H. J. Kim, G. T. Kim, I. S. Chang, J. Lee and N. T. Phung, “Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell”, Applied Microbiology and Biotechnology, vol.63, 2004, pp.672-681.
[6]C. A. Smolders, A. J. Reuvers, R. M. Boom and I. M. Wienk, “Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids”, Journal of Membrane Science, vol.73, 1992, pp.259-275.
[7]C. S. Reynolds, The Ecology of Phytoplankton, Cambridge University Press , 2006.
[8]D. Das and T. N. Veziroglu, “Advances in biological hydrogen production processes”, International Journal of Hydrogen Energy, vol.33, 2008, pp.6046-6057.
[9]D. Karamanev, “Biofuel cells: State of the art and perspectives”, Ecological engineering and environment protection , 2008, pp.74-81.
[10]D. M. Ruthven, Principles of adsorption and adsorption processes, Canada Wiley-Interscience, 1984.
[11]E.-K. Chang, Efficiency and properties of a direct photosynthetic/metabolic biofuel cell combined the cyanobacterium and polyaniline/carbon fiber electrode, 2008.
[12]F. Breinl and F. Haurowitz, “Chemische Untersuchung des Präzipitates aus Hämoglobin und Anti-Hämoglobin-Serum und Bemerkungen über die Natur der Antikörper. ”, Hoppe-Seyler’s Zeitschrift für physiologische Chemie, vol.192, 1930, pp.45-57.
[13]F. L. Dickert and O. Hayden, “Bioimprinting of Polymers and Sol-Gel Phases. Selective Detection of Yeasts with Imprinted Polymers”, Analytical Chemistry, vol.74, 2002, pp.1302-1306.
[14]F. L. Dickert, O. Hayden, P. Lieberzeit, C. Haderspoeck, R. Bindeus, C. Palfinger and B. Wirl, “Nano- and micro-structuring of sensor materials--from molecule to cell detection”, Synthetic Metals, vol.138, 2003, pp.65-69.
[15]F. Samsuri, J. S. Mitchell, M. M. Alkaisi and J. J. Evans, “Formation of Nanoscale Bioimprints of Muscle Cells Using UV-Cured Spin-Coated Polymers”, Nanotechnology, 2009, pp.1-6.
[16]F. W. Altena and C. A. Smolders, “Calculation of liquid-liquid phase separation in a ternary system of a polymer in a mixture of a solvent and a nonsolvent”, Macromolecules, vol.15, 1982, pp.1491-1497.
[17]G. Wulff, “Molecular Imprinting in Cross-Linked Materials with the Aid of Molecular Templates- A Way towards Artificial Antibodies”, Angewandte Chemie International Edition in English, vol.34, 1995, pp.1812-1832.
[18]G.-B. Lee, F.-C. Huang, C.-Y. Lee and J.-J. Miau, “A new fabrication process for a flexible skin with temperature sensor array and its applications”, Acta Mechanica Sinica, vol.20, 2004, pp.140-145.
[19]H. Gaffron and J. Rubin, “Fermentative and photochemical production of hydrogen in algae”, General Physiology, vol.26, 1942, pp.219-240.
[20]H. Huo, H. Su and T. Tan, “Adsorption of Ag+ by a surface molecular-imprinted biosorbent”, Chemical Engineering Journal, vol.150, 2009, pp.139-144.
[21]H. J. Kim, H. S. Park, M. S. Hyun, I. S. Chang, M. Kim and B. H. Kim, “A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens”, Enzyme and Microbial Technology, vol.30, 2002, pp.145-152.
[22]H. P. Bennetto, J. L. Stirling, K. Tanaka and C. A. Vega, “Anodic reactions in microbial fuel cells”, Biotechnology and Bioengineering, vol.25, 1983, pp.559-568.
[23]H. Qiang and A. Richmond, “Optimizing the population density inIsochrysis galbana grown outdoors in a glass column photobioreactor”, Journal of Applied Phycology, vol.6, 1994, pp.391-396.
[24]H. Shi, W.-B. Tsai, M. D. Garrison, S. Ferrari and B. D. Ratner, “Template-imprinted nanostructured surfaces for protein recognition”, Nature, vol.398, 1999, pp.593-597.
[25]H.-Y. Lin, C.-Y. Hsu, J. L. Thomas, S.-E. Wang, H.-C. Chen and T.-C. Chou, “The microcontact imprinting of proteins: The effect of cross-linking monomers for lysozyme, ribonuclease A and myoglobin”, Biosensors and Bioelectronics, vol.22, 2006, pp.534-543.
[26]J. Appel and R. Schulz, “Hydrogen metabolism in organisms with oxygenic photosynthesis: hydrogenases as important regulatory devices for a proper redox poising? ”, Journal of Photochemistry and Photobiology B: Biology, vol.47, 1998, pp.1-11.
[27]J. Larminie and A. Dicks, Fuel cell systems explained 2nd edition, John Wiley & Sons Ltd., 2003.
[28]J. M. Fernández Sevilla, E. Molina Grima, F. García Camacho, F. G. Acién Fernández and J. A. Sánchez Pérez, “Photolimitation and photoinhibition as factors determining optimal dilution rate to produce eicosapentaenoic acid from cultures of the microalga Isochrysis galbana”, Applied Microbiology and Biotechnology, vol.50, 1998, pp.199-205.
[29]J. R. Benemann, “Feasibility analysis of photobiological hydrogen production”, International Journal of Hydrogen Energy, vol.22, 1997, pp.979-987.
[30]K. Rabaey and W. Verstraete, “Microbial fuel cells: novel biotechnology for energy generation”, Trends in Biotechnology, vol.23, 2005, pp.291-298.
[31]Karube, H. Ikemoto, K. Kajiwara, E. Tamiya and H. Matsuoka, “Photochemical energy conversion using immobilized blue-green algae”, Journal of Biotechnology, vol.4, 1986, pp.73-80.
[32]L. Pauling, “The molecular basis of biological specificity”, Journal of American Chemical Society, vol.62, 1940, pp.2643-2657.
[33]L. Yilmaz and A. J. McHugh, “Modelling of asymmetric membrane formation. I. Critique of evaporation models and development of a diffusion equation formalism for the quench period”, Journal of Membrane Science, vol.28, 1986, pp.287-310.
[34]M. C. Potter, “Electrical effects accompanying the decomposition of organic compounds”, Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, vol.84, 1911, pp.260-276.
[35]M. Jaroniec, “Adsorption on heterogeneous surfaces: The exponential equation for the overall adsorption isotherm”, Surface Science, vol.50, 1975, pp.553-564.
[36]M. L. Ghirardi, A. Dubini, J. Yu and P.-C. Maness, “Photobiological hydrogen-producing systems”, Chemical Society Reviews, vol.38, 2009, pp.52-61.
[37]M. Rosenbaum, U. Schröder and F. Scholz, “Utilizing the green alga Chlamydomonas reinhardtii; for microbial electricity generation: a living solar cell”, Applied Microbiology and Biotechnology, vol.68, 2005, pp.753-756.
[38]N. Bereli, M. Andaç, G. Baydemir, R. Say, I. Y. Galaev and A. Denizli, “Protein recognition via ion-coordinated molecularly imprinted supermacroporous cryogels”, Journal of Chromatography A, vol.1190, 2008, pp.18-26.
[39]N. S. Lewis and D. G. Nocera, “Powering the Planet: Chemical Challenges in Solar Energy Utilization”, Proceedings of the National Academy of Sciences, vol.103, 2006, pp.15729-15735.
[40]P. Futerko and I. M. Hsing, “Two-dimensional finite-element method study of the resistance of membranes in polymer electrolyte fuel cells”, Electrochimica Acta, vol.45, 2000, pp.1741-1751.
[41]P. Tamagnini, R. Axelsson, P. Lindberg, F. Oxelfelt, R. Wünschiers and P. Lindblad, “Hydrogenases and Hydrogen Metabolism of Cyanobacteria”, Microbiology and Molecular Biology Reviews, vol.66, 2002, pp.1-20.
[42]R. A. Rozendal, A. W. Jeremiasse, H. V. M. Hamelers and C. J. N. Buisman, “Hydrogen Production with a Microbial Biocathode”, Environmental Science & Technology, vol.42, 2007, pp.629-634.
[43]R. Liu, X. Li, Y. Li, P. Jin, W. Qin and J. Qi, “Effective removal of rhodamine B from contaminated water using non-covalent imprinted microspheres designed by computational approach”, Biosensors and Bioelectronics, vol.25, 2009, pp.629-634.
[44]R. M. Boom, I. M. Wienk, T. van den Boomgaard and C. A. Smolders, “Microstructures in phase inversion membranes. Part 2. The role of a polymeric additive”, Journal of Membrane Science, vol.73, 1992, pp.277-292.
[45]S. B. Velasquez-Orta, T. P. Curtis and B. E. Logan, “Energy from algae using microbial fuel cells”, Biotechnology and Bioengineering, vol.103, 2009, pp.1068-1076.
[46]S. H. Ou, M. C. Wu, T. C. Chou and C. C. Liu, “Polyacrylamide gels with electrostatic functional groups for the molecular imprinting of lysozyme”, Analytica Chimica Acta, vol.504, 2004, pp.163-166.
[47]S. Hammarström and V. Baranov, “Is there a role for CEA in innate immunity in the colon? ”, Trends in Microbiology, vol.9, 2001, pp.119-125.
[48]S. Hjertén, J. Liao, K. Nakazato, Y. Wang, G. Zamaratskaia and H. Zhang, “Gels mimicking antibodies in their selective recognition of proteins”, Chromatographia, vol.44, 1997, pp.227-234.
[49]T. Happe and A. Kaminski, “Differential regulation of the Fe-hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii”, Biochemistry, vol.269, 2002, pp.1022-1032.
[50]T. Matsunaga, T. Hishiya and T. Takeuchi, “Surface plasmon resonance sensor for lysozyme based on molecularly imprinted thin films”, Analytica Chimica Acta, vol.591, 2007, pp.63-67.
[51]T.-H. Young and L.-W. Chen, “Pore formation mechanism of membranes from phase inversion process”, Desalination, vol.103, 1995, pp.233-247.
[52]T.-H. Young, D.-T. Lin, L.-Y. Chen, Y.-H. Hwang and W.-Y. Chiu, “Membranes with a Particulate Morphology Prepared by a Dry-Wet Casting Process”, Polymer, vol.40, 1999, pp.5257-5264.
[53]W. Nazaroff and L. Alvarez-Cohen, Environmental Engineering Science, John Wiley & Sons. Inc, 2001.
[54]Z. Zhongbo and J. Hu, “Selective removal of estrogenic compounds by molecular imprinted polymer (MIP)”, Water Research, vol.42, 2008, pp.4101-4108.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文