|
[1]A. Hocquenghem, “Codes Correcteurs d''Erreurs,” Chiffres, vol. 2, pp. 147–156, 1959. [2]A. J. Menezes, I. F. Blake, X. Gao, R. C. Mullin, S. A. Vanstone, and T. Yaghoobian, Applications of Finite Fields, Springer, 1992. [3]A. Vardy and Y. Be''ery, “More Efficient Soft Decoding of the Golay Codes,” IEEE Transactions on Information Theory, vol. 37, no. 3, pp. 667–672, May 1991. [4]C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon Limit Error-Correcting Coding and Decoding: Turbo-Codes (1),” in IEEE International Conference on Communications, May 1993, pp. 1064–1070. [5]C. E. Shannon, “A Mathematical Theory of Communication,” The Bell System Technical Journal, vol. 27, pp. 379–423, 623–656, Jul., Oct. 1948. [6]C. E. Shannon, “Communication Theory of Secrecy Systems,” The Bell System Technical Journal, vol. 28, no. 4, pp. 656–715, 1949. [7]C.-D. Lee, Algebraic Decoding and Weight Distributions of Binary Quadratic Residue Codes, Ph.D. dissertation, Department of Information Engineering, I-Shou University, 2006. [8]C.-D. Lee, Y.-H Chen, and Y. Chang, “A Unified Method for Determining the Weight Enumerators of Binary Extended Quadratic Residue Codes,” IEEE Communications Letters, vol. 13, no. 2, pp. 139–141, Feb. 2009. [9]C.-L Chr, S.-L. Su, and S.-W. Wu, “Decoding the (23, 12, 7) Golay Code Using a Low-Complexity Scheme,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E89-A, no. 8, pp. 2235–2238, Aug. 2006. [10]D. M. Gordon, “Minimal Permutation Sets for Decoding the Binary Golay Codes,” IEEE Transactions on Information Theory, vol. IT-28, no. 3, pp. 541–543, May 1982. [11]D. W. Hardy and C. L. Walker, Applied Algebra: Codes, Ciphers, and Discrete Algorithms, Prentice Hall, 2003. [12]E. Prange, “Cyclic Error-Correcting Codes in Two Symblos,” Air Force Cambridge Research Center–TN–57–103, Cambridge, Sept.1957. [13]E. Prange, “Some Cyclic Error-Correcting Codes with Simple Decoding Algorithms,” Air Force Cambridge Research Center–TN–58–156, Cambridge, Apr.1958. [14]E. R. Berlekamp, Algebraic Coding Theory, Revised Edition (M-6), Aegean Park Press, 1984. [15]E. T. Bell, Men of Mathematics, Touchstone, 1986. [16]ETSI EN 302 307, “Digital Video Broadcasting (DVB); Second Generation Framing Structure, Channel Coding and Modulation Systems for Broadcasting, Interactive Services, News Gathering and Other Broadband Satellite Applications (DVB-S2),” 2009. [17]G. A. Jones and J. M. Jones, Elementary Number Theory, Springer, 1998. [18]G. C. Kessler, An Overview of Cryptography,http://www.garykessler.net/library/crypto.html [19]Galois biography,http://www-history.mcs.st-andrews.ac.uk/Biographies/Galois.html [20]H. P. Ho and P. Sweeney, “Cover Positions and Decoding Complexity of the Golay Code, Using an Extended Kasami Algorithm,” IEEE Communications Letters, vol. 2, no. 12, pp. 324–326, Dec. 1998. [21]H. P. Ho and P. Sweeney, “Low Complexity Decoding of Cyclic Codes Using an Extended Kasami Algorithm,” Electronics Letters, vol. 34, no. 8, pp. 756–757, Apr. 1998. [22]I. Boyarinov, I. Martin and B. Honary, “High-Speed Decoding of Extended Golay Code,” IEE Proceedings - Communications, vol. 147, no. 6, pp. 333–336, Dec. 2000. [23]I. S. Reed and G. Solomon, “Polynomial Codes over Certain Finite Fields,” SIAM Journal on Applied Mathematics, vol. 8, pp. 300–304, Jun. 1960. [24]I. S. Reed, T. K. Truong, X. Chen, and X. Yin, “The Algebraic Decoding of the (41, 21, 9) Quadratic Residue Code,” IEEE Transactions on Information Theory, vol. 38, no. 3, pp. 974–985, May 1992. [25]I. S. Reed, X. Yin, and T. K. Truong, “Algebraic Decoding of the (32, 16, 8) Quadratic Residue Code,” IEEE Transactions on Information Theory, vol. 36, no. 4, pp. 876–880, Jul. 1990. [26]I. S. Reed, X. Yin, T. K. Truong, and J. K. Holmes, “Decoding the (24, 12, 8) Golay code,” IEE Proceedings - Computers and Digital Techniques, vol. 137, no. 3, pp. 202–206, May 1990. [27]ISO/IEC 18004, Information Technology – Automatic Identification and Data Capture Techniques – QR Code 2005 Bar Code Symbology Specification, Second edition, 2006. [28]J. Cowley, Communications and Networking: An Introduction, Springer, 2006. [29]J. L. Anderson, “On Minimal Decoding Sets for the Extended Binary Golay Code,” IEEE Transactions on Information Theory, vol. 38, no. 5, pp. 1560–1561, Sept. 1992. [30]J. Wolfmann, “A Permutation Decoding of the (24, 12, 8) Golay Code,” IEEE Transactions on Information Theory, vol. IT-29, no. 5, pp. 748–750, Sept. 1983. [31]J.-F. Ma, “Decoding of the Golay Code,” Electronics Letters, vol. 33, no. 17, pp. 1451–1452, Aug. 1997. [32]J.-H. Chen, A High-Throughput Diversified AES Design of CAD, Master thesis, Department of Information Engineering, I-Shou University, 2006. [33]M. Elia and J. Carmelo Interlando, “Quadratic-Residue Codes and Cyclotomic Fields,” Acta Applicandae Mathematicae, vol. 93, no. 1–3, pp. 237–251, Sept. 2006. [34]M. Elia, “Algebraic Decoding of the (23, 12, 7) Golay Code,” IEEE Transactions on Information Theory, vol. IT-33, no. 1, pp. 150–151, Jan. 1987. [35]M. J. E. Golay, “Notes on Digital Coding,” Proceedings of the IRE, vol. 37, pp. 657, 1949. [36]M.-H. Jing, Z.-H. Chen, J.-H. Chen, and Y.-H. Chen, “Reconfigurable System for High-Speed and Diversified AES Using FPGA,” Microprocessors and Microsystems, vol. 31, no. 2, pp. 94–102, Mar. 2007. [37]National Aeronautics and Space Administration (NASA), http://www.nasa.gov/ [38]National Institute of Standards and Technology, “Announcing the Advanced Encryption Standard (AES),” Federal Information Processing Standards Publication 197, Nov. 2001. [39]P. Elias, “Coding for Noisy Channels,” IRE Convention Record, Part 4, pp. 37–46, 1955. [40]P. Gaborit, C.-S. Nedeloaia, and A. Wassermann, “On the Weight Enumerators of Duadic and Quadratic Residue Codes,” IEEE Transactions on Information Theory, vol. 51, no. 1, pp. 402–407, Jan. 2005. [41]R. C. Bose and D. K. Ray-Chaudhuri, “Further Results on Error Correcting Binary Group Codes,” Information and Control, vol. 3, pp. 279–290, Sept. 1960. [42]R. C. Bose and D. K. Ray-Chaudhuri, “On a Class of Error Correcting Binary Group Codes,” Information and Control, vol. 3, pp. 68–79, Mar. 1960. [43]R. G. Gallager, “Low–Density Parity–Check Codes,” IRE Transactions on information theory, vol. 8, no. 1, pp. 21–28, Jan. 1962. [44]R. He, I. S. Reed, T. K. Truong, and X. Chen, “Decoding the (47, 24, 11) Quadratic Residue Code,” IEEE Transactions on Information Theory, vol. 47, no. 3, pp. 1181–1186, Mar. 2001. [45]R. T. Chien, ”Cyclic Decoding Procedure for the Bose-Chaudhuri-Hocquenghem Codes,” IEEE Transactions on Information Theory, vol. IT-10, no. 4, pp. 357–363, Oct. 1964. [46]R. W. Hamming, “Error Detecting and Error Correcting Codes,” The Bell System Technical Journal, vol. 29, no. 2, pp. 147–160, Apr. 1950. [47]S. B. Wicker, Error Control Systems for Digital Communication and Storage, Prentice Hall, 1994. [48]S. Lin and D. J. Costello, Error Control Coding, 2nd Edition, Prentice Hall, 2004. [49]S. Ling and C. Xing, Coding Theory: A First Course, Cambridge University Press, 2004. [50]S.M. Dodunekov and J.E.M. Nilsson, “Parallel Decoding of the [23, 12, 7] Binary Golay Code,” IEE Proceedings - Computers and Digital Techniques, vol. 141, no. 2, pp. 119–122, Mar. 1994. [51]S.-W. Wei and C.-H. Wei, “On High-speed Decoding of the (23,12,7) Golay Code,” IEEE Transactions on Information Theory, vol. 36, no. 3, pp. 692–695, May 1990. [52]T. K. Truong, P. Y. Shih, W. K. Su, C. D. Lee, and Y. Chang, “Algebraic Decoding of the (89, 45, 17) Quadratic Residue Code,” IEEE Transactions on Information Theory, vol. 54, no. 11, pp. 5005–5011, Nov. 2008. [53]T. K. Truong, Y. Chang, Y. H. Chen, and C. D. Lee, “Algebraic Decoding of (103, 52, 19) and (113, 57, 15) Quadratic Residue Codes,” IEEE Transactions on Communications, vol. 53, no. 5, pp. 749–754, May 2005. [54]T. Kasami, “A Decoding Procedure for Multiple-Error-Correcting Cyclic Codes,” IEEE Transactions on Information Theory, vol. IT-10, no. 2, pp. 134–138, Apr. 1964. [55]T.-C. Lin, T.-K. Truong, H.-P. Lee, and H.-C. Chang, “Algebraic Decoding of the (41, 21, 9) Quadratic Residue Code,” Information Sciences, vol. 179, no. 19, pp. 3451–3459, Sept. 2009. [56]T.-K. Truong, C.-D. Lee, and Y. Chang, “A New Scheme to Determine the Weight Distributions of Binary Extended Quadratic Residue Codes,” IEEE Transactions on Communications, vol. 57, no. 5, pp. 1221–1224, May 2009. [57]T.-K. Truong, Y. Chang, and C.-D. Lee, “The Weight Distributions of Some Binary Quadratic Residue Codes,” IEEE Transactions on Information Theory, vol. 51, no. 5, pp. 1776–1782, May 2005. [58]The Evariste Galois Archive, http://www.galois-group.net/ [59]The Unicode Consortium, The Unicode Standard, 5th Edition, Addison-Wesley Professional, 2006 [60]V. D. Goppa, “A New Class of Linear Correcting Codes,” Problemy Peredachi Informatsii, vol. 6, no. 3, pp. 24–30, Sept. 1970. [61]V. D. Goppa, “Rational Representation of Codes and (L, g)-Codes,” Problemy Peredachi Informatsii, vol. 7, no. 3, pp. 41–49, Sept. 1971. [62]V. Pless, “Decoding the Golay Codes,” IEEE Transactions on Information Theory, vol. IT-32, no. 4, pp. 561–567, Jul. 1986. [63]V. Pless, Introduction to the Theory of Error-Correcting Codes, Third Edition, Wiley-Interscience, 1998. [64]X. Chen, I. S. Reed, and T. K. Truong, “Decoding the (73, 37, 13) Quadratic Residue Code,” IEE Proceedings - Computers and Digital Techniques, vol. 141, no. 5, pp. 253–258, Sept. 1994. [65]Y. Chang and C.-D. Lee, “Algebraic Decoding of a Class of Binary Cyclic Codes Via Lagrange Interpolation Formula,” IEEE Transactions on Information Theory, vol. 56, no. 1, pp. 130–139, Jan. 2010. [66]Y. Chang, C.-D. Lee, Z.-H. Chen and J.-H. Chen, “(23, 12, 7) Quadratic Residue Decoder Based on Syndrome-Weight Determination,” Electronics Letters, vol. 44, no. 19, pp. 692–694, Sept. 2008. [67]Y. Chang, T. K. Truong, I. S. Reed, H. Y. Cheng, and C. D. Lee, “Algebraic Decoding of the (71, 36, 11), (79, 40, 15), and (97, 49, 15) Quadratic Residue Codes,” IEEE Transactions on Communications, vol. 51, no. 9, pp. 1463–1473, Sept. 2003. [68]Y. Riho and Y. Ito, “Semiconductor Storage Device and Refresh Control Method Therefor,” United States Patent Application 20070230265, 2007. [69]Y.-H. Chen, T.-K. Truong, C.-H. Huang, and C.-H. Chien, “A Lookup Table Decoding of Systematic (47, 24, 11) Quadratic Residue Code,” Information Sciences, vol. 179, no. 14, pp. 2470–2477, Jun. 2009. [70]Z.-H. Chen, The Study of Modified Massey-Omura Multiplier and Multiplicative Inversion over Normal Bases, Master thesis, Department of Information Engineering, I-Shou University, 2005.
|