跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/13 09:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃永成
研究生(外文):Yung-Cheng Huang
論文名稱:生物環境因子與氟化去氧葡萄糖正子電腦斷層掃描影像之活化棕色脂肪的關聯性
論文名稱(外文):The relationship between biological environmental factors and activated brown adipose tissue on 18F-FDG PET images
指導教授:杜維昌杜維昌引用關係陳泰賓陳泰賓引用關係
指導教授(外文):Wei-Chang DuTai-Been Chen
學位類別:碩士
校院名稱:義守大學
系所名稱:資訊工程學系碩士在職專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:41
中文關鍵詞:氟化去氧葡萄糖正子電腦斷層棕色脂肪腫瘤狀態溫度
外文關鍵詞:18F-FDG PETBATNeoplastic StatusTemperature
相關次數:
  • 被引用被引用:0
  • 點閱點閱:719
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目的:氟化去氧葡萄糖正子掃描對於多種癌症都能有效的偵測以達到診斷的目的。而近來已知棕色脂肪亦會有高度的氟化去氧葡萄糖攝取。棕色脂肪含有豐富的血流供應及高度粒線體代謝活性,是一種高度特異化的產熱組織;對於非寒顫性的產熱反應相當重要。在嚙齒類及人類新生兒的糖份代謝、能量平衡、及體重方面都有重要的影響。棕色脂肪已知可被某些因子活化,例如低溫暴露。皮膚的低溫刺激來自周遭環境溫度的下降,被認為是活化棕色脂肪啟動非寒顫性產熱反應的主要因子。雖然隨著年齡增長,棕色脂肪的能量調節功能逐漸褪去,但零星的棕色脂肪組織仍可在成人的白色脂肪群中被發現。近來更多的注意力開始集中於藉由活化棕色脂肪來消耗堆積的能量與肥胖。這個研究的目的是想更進一步探討在位於熱帶氣候區,亞洲人種為主的棕色脂肪的特性,以及其活化程度與生物環境因子的關聯性。在這個領域的突破,將來或許能更有效的來對抗肥胖症。
方法:回溯性研究自2005年6月至2009年5月於高雄長庚醫院核醫科完成的正子掃描影像。針對影像上發現活化棕色脂肪的受檢者,我們藉由三維立體像素分析及種子區域成長法(Seed Region Growing)進行影像切割來量測其全身棕色脂肪的活化程度。進而以多元線性迴歸來分析全身棕色脂肪的活化程度與生物環境因子(包含:年齡、身體質量指數、空腹血糖值、性別、腫瘤狀態、室外氣溫)的關聯性。
結果:相較於無活化棕色脂肪的受檢者,統計分析顯示,有活化棕色脂肪的受檢者較年輕、較瘦、女性為主、較低的空腹血糖值、並在較低的氣溫下接受了正子掃描。然而,針對影像發現活化棕色脂肪的受檢者,多元線性迴歸顯示,在所測量的生物環境因子中,全身棕色脂肪的活化程度只與腫瘤狀態程度呈現顯著關聯性。
結論:於熱帶地區的人們,在棕色脂肪的活化程度方面,腫瘤狀態程度比起其他生物環境因子扮演了一個更為重要的角色。
Purpose: Positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) has been used successfully in the diagnosis of various cancers. Increased FDG uptake on PET imaging in brown adipose tissue (BAT) has recently been recognized. BAT, with characteristic rich vascularization and high mitochondrial metabolic activity, is a highly specialized thermogenic tissue; it is crucial for non-shivering thermogenesis. In rodents and newborn humans, BAT has profound effects on body weight, energy balance, and glucose metabolism. It is known to be stimulated by several factors, including cold exposure. A reduction in skin or external temperature, usually resulting from a fall in environmental temperature, is the primary thermoregulatory stimulus for activating BAT non-shivering thermogenesis. Though it is believed that energy expenditure regulation regresses with increasing age, islets of brown adipocytes can still be found in the white adipose tissue of adult humans. Recently, more attention has been attracted by the interaction between BAT, as a consumer of stored energy, and the growing epidemic of human obesity. The purpose of our study is to further examine the characteristics of BAT expression in a large cohort of patients undergoing FDG PET at our institution in tropical areas, and to determine how this related to outdoor temperature and other biological environmental factors.
Methods: We reviewed 18F-FDG PET/CT scans conducted in our department between June 2005 and May 2009. For patients with activated BAT, the total metabolic activity (TMA) of BAT deposits was quantified by imaging analysis using 3-dimension voxel-based analysis with seed region growing method under a limited threshold. Multiple linear regression models were used to evaluate the relationships between the TMA of BAT and biological and environmental factors, including age, body mass index, fasting blood sugar, gender, neoplastic status, and outdoor temperature.
Results: Compared to patients without activated BAT, statistical analysis showed that the patients with activated BAT were significantly younger, leaner, more often female, and had lower fasting blood sugar, and there was a lower outdoor temperature when the 18F-FDG PET/CT scan was performed. Multiple linear regression analysis for our patients determined that neoplastic status was the only significant factor associated with the TMA of BAT (p = 0.016).
Conclusions: For people living in tropical areas, neoplastic status appears to play a more important role than other biological or environmental factors in the metabolic activity of BAT.
Figures i
Tables ii
Acknowledgments iii
中文摘要 iv
Abstract vi
Chapter 1 Introduction 1
1-1 Background 1
1-2 Research motivation 2
Chapter 2 Materials and methods 3
2-1 Literature search 3
2-2 Subjects 4
2-3 18F-FDG PET/CT 5
2-4 Brown adipose tissue and metabolic activity measurements 6
2-5 Outdoor temperature parameters 9
2-6 Neoplastic status determination 10
2-7 Statistical analysis 11
Chapter 3 Results 12
3-1 Meta-analysis 12
3-2 Univariate and multivariate analysis 15
Chapter 4 Discussion 20
4-1 Simple linear regression for meta-analysis of the prevalence of BAT and the average outdoor temperature 20
4-2 Quantifying activated BAT in the living human body 22
4-3 Relationships between the TMA of BAT and biological and environmental factors 23
4-4 Limitation 26
Chapter 5 Conclusions 27
References 28
Figures
Figure 1 An example of determining the volume of interest (VOI) of the activated BAT deposits 8
Figure 2 A simple linear regression for meta-analysis of the prevalence of activated brown adipose tissue (BAT) with 18F-FDG uptake and the average outdoor temperature during the research periods 14
Figure 3 Scatter diagram and univariate analysis of the total metabolic activity (TMA) of BAT and biological and environmental factors 18
Tables
Table 1 Prevalence of activated BAT with 18F-FDG uptake and average outdoor temperature 13
Table 2 Demographic features of patients with and without activated BAT on 18F-FDG PET/CT 16
Table 3 Imaging characteristics of activated BAT on 18F-FDG PET/CT 16
Table 4 Univariate analysis of the total metabolic activity (TMA) of BAT and biological and environmental factors 17
Table 5 Multivariate linear regression analysis of the total metabolic activity (TMA) of BAT and biological and environmental factors 19
[1]Au-Yong IT, Thorn N, Ganatra R, Perkins AC, Symonds ME. Brown adipose tissue and seasonal variation in humans. Diabetes. 2009;58:2583-7.
[2]Besedovsky H, Sorkin E, Felix D, Haas H. Hypothalamic changes during the immune response. Eur J Immunol. 1977;7:323-5.
[3]Bing C, Brown M, King P, Collins P, Tisdale MJ, Williams G. Increased gene expression of brown fat uncoupling protein (UCP)1 and skeletal muscle UCP2 and UCP3 in MAC16-induced cancer cachexia. Cancer Res. 2000;60:2405-10.
[4]Bomanji JB, Costa DC, Ell PJ. Clinical role of positron emission tomography in oncology. Lancet Oncol. 2001;2:157-64.
[5]Brooks SL, Neville AM, Rothwell NJ, Stock MJ, Wilson S. Sympathetic activation of brown-adipose-tissue thermogenesis in cachexia. Biosci Rep. 1981;1:509-17.
[6]Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84:277-359.
[7]Cinti S. The role of brown adipose tissue in human obesity. Nutr Metab Cardiovasc Dis. 2006;16:569-74.
[8]Cohade C, Mourtzikos KA, Wahl RL. "USA-Fat": prevalence is related to ambient outdoor temperature-evaluation with 18F-FDG PET/CT. J Nucl Med. 2003;44:1267-70.
[9]Coombes RC, Rothwell NJ, Shah P, Stock MJ. Changes in thermogenesis and brown fat activity in response to tumour necrosis factor in the rat. Biosci Rep. 1987;7:791-9.
[10]Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860-7.
[11]Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360:1509-17.
[12]Desaive P, Ronson A. Stress spectrum disorders in oncology. Curr Opin Oncol. 2008;20:378-85.
[13]Dobert N, Menzel C, Hamscho N, Wordehoff W, Kranert WT, Grunwald F. Atypical thoracic and supraclavicular FDG-uptake in patients with Hodgkin''s and non-Hodgkin''s lymphoma. Q J Nucl Med Mol Imaging. 2004;48:33-8.
[14]Hadi M, Chen CC, Whatley M, Pacak K, Carrasquillo JA. Brown fat imaging with (18)F-6-fluorodopamine PET/CT, (18)F-FDG PET/CT, and (123)I-MIBG SPECT: a study of patients being evaluated for pheochromocytoma. J Nucl Med. 2007;48:1077-83.
[15]Hany TF, Gharehpapagh E, Kamel EM, Buck A, Himms-Hagen J, von Schulthess GK. Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur J Nucl Med Mol Imaging. 2002;29:1393-8.
[16]Heaton JM. The distribution of brown adipose tissue in the human. J Anat. 1972;112:35-9.
[17]Herschbach P, Book K, Brandl T, Keller M, Lindena G, Neuwohner K, et al. Psychological distress in cancer patients assessed with an expert rating scale. Br J Cancer. 2008;99:37-43.
[18]Karrow NA. Activation of the hypothalamic-pituitary-adrenal axis and autonomic nervous system during inflammation and altered programming of the neuroendocrine-immune axis during fetal and neonatal development: lessons learned from the model inflammagen, lipopolysaccharide. Brain Behav Immun. 2006;20:144-58.
[19]Kim S, Krynyckyi BR, Machac J, Kim CK. Temporal relation between temperature change and FDG uptake in brown adipose tissue. Eur J Nucl Med Mol Imaging. 2008;35:984-9.
[20]Kvetnansky R, Sabban EL, Palkovits M. Catecholaminergic systems in stress: structural and molecular genetic approaches. Physiol Rev. 2009;89:535-606.
[21]Lazar MA. Developmental biology. How now, brown fat? Science. 2008;321:1048-9.
[22]Lean ME. Brown adipose tissue in humans. Proc Nutr Soc. 1989;48:243-56.
[23]Lechin F, van der Dijs B, Lechin A, Orozco B, Lechin M, Baez S, et al. Plasma neurotransmitters and cortisol in chronic illness: role of stress. J Med. 1994;25:181-92.
[24]Lopez-Soriano J, Argiles JM, Lopez-Soriano FJ. Metabolic effects of tumour necrosis factor-alpha on rat brown adipose tissue. Mol Cell Biochem. 1995;143:113-8.
[25]Lowell BB, Flier JS. Brown adipose tissue, beta 3-adrenergic receptors, and obesity. Annu Rev Med. 1997;48:307-16.
[26]Morrison SF. Central pathways controlling brown adipose tissue thermogenesis. News Physiol Sci. 2004;19:67-74.
[27]Ouellet V, Routhier-Labadie A, Bellemare W, Lakhal-Chaieb L, Turcotte E, Carpentier AC, et al. Outdoor Temperature, age, sex, body mass index, and diabetic status determine the prevalence, mass, and glucose-uptake activity of 18F-FDG-detected BAT in humans. J Clin Endocrinol Metab. 2010;96:192-9.
[28]Pace L, Nicolai E, D''Amico D, Ibello F, Della Morte AM, Salvatore B, et al. Determinants of physiologic (18)F-FDG uptake in brown adipose tissue in sequential PET/CT examinations. Mol Imaging Biol. 2010; doi: 10.1007/s11307-010-0431-9
[29]Rousseau C, Bourbouloux E, Campion L, Fleury N, Bridji B, Chatal JF, et al. Brown fat in breast cancer patients: analysis of serial (18)F-FDG PET/CT scans. Eur J Nucl Med Mol Imaging. 2006;33:785-91.
[30]Shellock FG, Riedinger MS, Fishbein MC, Shah PK. Prevalence of brown adipose tissue in chronic congestive heart failure secondary to coronary heart disease. Am J Cardiol. 1985;56:197-8.
[31]Shellock FG, Riedinger MS, Fishbein MC. Brown adipose tissue in cancer patients: possible cause of cancer-induced cachexia. J Cancer Res Clin Oncol. 1986;111:82-5.
[32]Tatsumi M, Engles JM, Ishimori T, Nicely O, Cohade C, Wahl RL. Intense (18)F-FDG uptake in brown fat can be reduced pharmacologically. J Nucl Med. 2004;45:1189-93.
[33]Tracey KJ. The inflammatory reflex. Nature. 2002;420:853-9.
[34]Yeung HW, Grewal RK, Gonen M, Schoder H, Larson SM. Patterns of (18)F-FDG uptake in adipose tissue and muscle: a potential source of false-positives for PET. J Nucl Med. 2003;44:1789-96.
[35]Zabora J, BrintzenhofeSzoc K, Curbow B, Hooker C, Piantadosi S. The prevalence of psychological distress by cancer site. Psychooncology. 2001;10:19-28.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top