跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/04 17:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林庭裕
研究生(外文):Ting-Yu Lin
論文名稱:多頻段響應之帶通濾波器設計
論文名稱(外文):Design of Microstrip Bandpass filter With a Multi-band Response
指導教授:潘宗龍
指導教授(外文):Chung-Long Pan
學位類別:碩士
校院名稱:義守大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:89
中文關鍵詞:步階阻抗共振器平行耦合缺陷接地結構
外文關鍵詞:DGSSIRParallel-coupled
相關次數:
  • 被引用被引用:0
  • 點閱點閱:497
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
本文提出的帶通濾波器主要針對於多頻段之通訊系統架構所提出的分析探討,加上因便利性輕薄化的科技需求日益大增促使元件的大小勢必要更微小,故在此提出結合平行耦合線、步階阻抗以及缺陷接地結構(Defected Ground Structure, DGS)三種架構之帶通濾波器。首先使用步階阻抗共振器(SIR)作為耦合濾波器的共振元件,步階阻抗諧振器之阻抗比值可用來控制二次諧波之頻率,藉此產生雙頻帶之效果,再與平行耦合結構針對所產生的傳輸零點及衰減頻寬作比較。設計當中會使用到耦合係數法不僅減少了推導泛多濾波器結構的時間,而且在不同的電路配置下只要重新模擬共振器的響應頻率,以及各間距的耦合量即可直接合成所需規格的濾波器,接著再導入Tapped-in的方式,促使零點的位置可以自由的決定無需再重新計算濾波器參數在特性上也額外加大帶寬。最後,在單板背面結合了DGS,進一步地壓低止帶的插入損耗以達到高抗干擾的特性,並有效控制濾波器的工作頻率。
根據以上設計程序,實作中心頻率為2.45GHz和5.25GHz的帶通濾波器,經過模擬與量測的結果證實本論文所提出的方法結構可有效的達到輕薄短小、結構簡單且低成本高效益的設計。研究方式均經過設計與製作,並將所得結果相互比較,此研究所獲得之經驗,可供爾後設計多頻帶通濾波器之參考依據。
In this thesis, Novel Microwave dual-band bandpass filters (BPF) are analyzed and designed for multi-band communication system. Utilizing the coupled stepped-impedance resonators (SIR) and defected ground structure (DGS). The resonator structure of coupling filter use stepped impedance resonator (SIR) and with modulation of the impedance ratio of the resonators for harmonics is controlled, the dual-band effect is obtained and with parallel-coupling structure to compare for transmission zero and reject bandwidth. In this case, coupling coefficient not only retrench the time of analyze the structure of resonators, but the method can synthesize the required filter under different circuit, only re-simulation the frequency responded and the coupling coefficient for resonator. Using the Tapped-in, it can make transmission zeros free and not calculate the filter parameter again. Finally, the bottom layer consist DGS to so depress stop-band of insertion loss that achieve the feature with harmonic full suppression, and effective control of filter frequency.
According to design process, the operation bandpass filter center frequency is 2.45GHz and 5.25GHz, the method proposed in this paper that structure can effectively achieve the slim and simple from simulation and measurement results. The techniques presented in this research are expected to serve as a useful reference for microwave filter designers in this research fields.
中文摘要i
英文摘要ii
目錄iii
圖目錄iv
表目錄vii
第一章 緒論1
1.1 研究動機1
1.2 文獻探討2
1.3 論文架構5
第二章 帶通濾波器之設計理論6
2.1 簡介6
2.2 插入損耗(Insertion Loss)法7
2.2.1 低通濾波器原型(Prototype)7
2.2.2 頻率與阻抗轉換12
2.3 阻抗與導納轉換器15
2.4 帶通耦合濾波器18
2.5 耦合係數法19
2.5.1 外部品質因數以及內部耦合係數求法20
2.5.2 使用耦合係數法設計濾波器的流程23
第三章 步階阻抗共振器理論分析24
3.1 步階阻抗(SIR)共振器理論24
3.1.1 輸入阻抗分析24
3.1.2 最小共振器長度25
3.1.3 高階共振頻率26
3.1.4 固定阻抗比的共振器27
3.1.5 輸入與輸出饋入點位置與負載阻抗的決定28
3.2 使用SIR的耦合濾波器30
第四章 帶通耦合濾波器設計37
4.1 SIR耦合濾波器設計38
4.1.1 耦合係數法設計SIR濾波器40
4.1.2 過耦合SIR濾波器架構42
4.1.3 SIR耦合設計於二階濾波器之應用與量測49
4.2 缺陷接地型式濾波器之設計原理分析56
4.2.1 單板下層缺陷接地結構之特性58
第五章 結論74
參考文獻78
圖目錄
Fig. 1.1 傳統通訊系統架構圖2
Fig. 1.2 理想濾波器的振幅頻率響應3
Fig. 2.1 Insertion Loss 法設計流程6
Fig. 2.2 Coupling Coefficient 法設計流程6
Fig. 2.3 低通原型之階梯式電路(a)串聯式(b)並聯式9
Fig. 2.4 巴特沃斯低通濾波器頻率響應圖10
Fig. 2.5 柴比雪夫低通濾波器頻率響應圖10
Fig. 2.6 (a)ωc=1低通濾波器原型之頻率響應圖(b)低通轉帶通之頻率響應圖14
Fig. 2.7 J型倒轉器轉換電路15
Fig. 2.8 K型倒轉器轉換電路16
Fig. 2.9 集總元件型式的倒轉器17
Fig. 2.10 並聯J型倒轉器的純粹並聯帶通電路18
Fig. 2.11 以電納斜率參數取代集總元件的帶通電路18
Fig. 2.12 外部品質因數和內部耦合係數所表示的帶通濾波器等效電路19
Fig. 2.13 外部品質因數(Qext)量測電路20
Fig. 2.14 外部品質因數(Qext)量測結果20
Fig. 2.15 內部耦合係數(M)量測電路21
Fig. 2.16 內部耦合係數(M)量測結果22
Fig. 3.1 SIR共振器結構圖24
Fig. 3.2 阻抗比與總電子長度關係圖25
Fig. 3.3 阻抗比與共振頻率關係圖26
Fig. 3.4 (a)Odd resonate(b)Even resonate 27
Fig. 3.5 使用饋入耦合輸入的步階阻抗共振器29
Fig. 3.6 平行耦合線段電壓與電流示意圖30
Fig. 3.7 平行耦合線之電場線分佈(a)偶模(b)奇模30
Fig. 3.8 耦合線近似TEM之等效電容網路31
Fig. 3.9 耦合線等效電容網路(a)偶模(b)奇模31
Fig. 3.10 平行耦合線段的奇、模電流32
Fig. 3.11 耦合線段之等效電路圖34
Fig. 4.1.1 原型SIR濾波器電路架構及電路佈局38
Fig. 4.1.2 一階SIR平行耦合帶通濾波器共振器長度39
Fig. 4.1.3 SIR耦合濾波器於FR4基板之模擬頻率響應39
Fig. 4.1.4 分支饋入SIR濾波器架構圖40
Fig. 4.1.5 饋入點與傳輸零點之關係圖41
Fig. 4.1.6 傳統耦合與過耦合架構圖42
Fig. 4.1.7 量測頻率響應的架構圖43
Fig. 4.1.8 SIR共振器頻率響應圖43
Fig. 4.1.9 耦合係數量測佈局圖44
Fig. 4.1.10 耦合係數結果圖44
Fig. 4.1.11 外部品質因數量測配置45
Fig. 4.1.12 外部品質因數量測結果45
Fig. 4.1.13 模擬與量測結果比較圖46
Fig. 4.1.14 一階雙頻帶通濾波器平均電流密度圖47
Fig. 4.1.15 一階帶通濾波器實體48
Fig. 4.1.16 二階SIR平行耦合帶通濾波器49
Fig. 4.1.17 二階SIR平行耦合帶通濾波器立體示意圖49
Fig. 4.1.18 二階SIR平行耦合帶通濾波器模擬響應50
Fig. 4.1.19 一、二階反射損耗比較圖51
Fig. 4.1.20 一、二階插入損耗比較圖51
Fig. 4.1.21 二階雙頻帶通濾波器模擬與量測圖52
Fig. 4.1.22 一、二階量測圖比較52
Fig. 4.1.23 二階雙頻帶通濾波器平均電流密度圖54
Fig. 4.1.24 二階雙頻帶通濾波器實體55
Fig. 4.2.1 接地共振的等效電路57
Fig. 4.2.2 Butterworth型式低通濾波器57
Fig. 4.2.3 缺陷接地型式帶通濾波器立體示意圖58
Fig. 4.2.4 缺陷接地型式帶通濾波器接地結構佈局58
Fig. 4.2.5 訊號耦合路徑1上層部分59
Fig. 4.2.6 訊號耦合路徑2下層部分59
Fig. 4.2.7 有無DGS結構頻率響應比較圖60
Fig. 4.2.8 缺陷接地結構位置變化圖61
Fig. 4.2.9 缺陷接地結構位移之第一通帶頻率變化61
Fig. 4.2.10 缺陷接地結構位移之第一通帶反射損變化62
Fig. 4.2.11 缺陷接地結構位移之第一通帶插入損變化62
Fig. 4.2.12 缺陷接地結構位移之第二通帶頻率變化63
Fig. 4.2.13 缺陷接地結構位移之第二通帶反射損變化63
Fig. 4.2.14 缺陷接地結構位移之第二通帶插入損變化64
Fig. 4.2.15 DGS大小之頻率變化65
Fig. 4.2.16 DGS大小之諧波抑制變化65
Fig. 4.2.17 DGS帶通濾波器上層平均電流密度66
Fig. 4.2.18 DGS帶通濾波器下層平均電流密度66
Fig. 4.2.19 缺陷接地型式帶通濾波器量測與模擬比較圖67
Fig. 4.2.20 一階帶通濾波器有無DGS結構比較圖68
Fig. 4.2.21 一階缺陷接地型式帶通濾波器實體圖69
Fig. 4.2.22 二階DGS帶通濾波器立體示意圖70
Fig. 4.2.23 二階DGS帶通濾波器接地結構佈局70
Fig. 4.2.24 二階DGS帶通濾波器量測與模擬比較圖71
Fig. 4.2.25 二階帶通濾波器有無DGS量測比較圖71
Fig. 4.2.26 二階缺陷接地型式帶通濾波器實體圖73
Fig. 5.1 一階帶通濾波器板厚參數修正後模擬圖76
Fig. 5.2 一階帶通濾波器S11比較圖76
Fig. 5.3 間距對頻率的影響比較77
表目錄
Table 2.1 Butterworth LPF原型電路各元件值(N=1~10)11
Table 2.2 Chebyshev LPF原型電路各元件值(N=1~10,0.5dB漣波)11
Table 2.3 濾波器原型電路之轉換關係13
Table 4.1 帶通濾波器各項設計參數37
Table 4.1.1 線段長度與頻率關係表41
Table 4.1.2 模擬與量測結果比較47
Table 4.1.3 一、二階S11及S21模擬比較50
Table 4.1.4 二階雙頻帶通濾波器模擬與量測比較53
Table 4.1.5 一、二階量測比較53
Table 4.2.1 模擬與量測結果比較67
Table 4.2.2 模擬與量測結果比較72
Table 4.2.3 二階DGS帶通濾波器規格75
Table 4.2.4 四組帶通濾波器頻率量測與頻寬比較表77
中文部份
[1]何滿龍、孔繁喜、林坤熒校閱, 「射頻電路設計實習」, 育英科技有限公司,2001,ch.13.
[2]David M. Pozar, 郭仁財譯, 「微波工程」, 高立圖書有限公司, 2004, 2nd, ch.8.
英文部份
[1]A. Sanada, H. Takehara, and I. Awai, “Design of the CPW in-line lamda/4stepped-impedance resonator bandpass filter,” IEEE Microwave Conference,APMC, 3-6 Dec. 2001, vol. 2, pp. 633-636.
[2]A.F. Sheta, J.P. Coupez, G. Tanne, S. Toutain, and J.P. Blot, “Miniature microstrip stepped impedance resonator bandpass filters and diplexers for mobile communications,” IEEE MTT-S Digest, vol. 2, pp. 607-610, 17-21 Jun. 1996.
[3]Azzeddine Djaiz and Tayeb A. Denidni, “A New Compact Microstrip Two-layer Bandpass Filter Using Aperture-Coupled SIR-Hairpin Resonators With Transmission Zeros”, IEEE Trans. Microwave Theory and Techniques, vol.54, no.5, pp. 1929-1936, May. 2006.
[4]Azzeddine Djaiz and Tayeb A. Denidni, “A New Two Layer Bandpass Filter Using Stepped Impedance Hairpin Resonators for Wireless Applications”, IEEE MTT-S Int. Microwave Symp. Digest, Jun. 2005, pp. 1487-1490.
[5]Chih-Cheng Lin, Yo-Shen Lin, and Chun Hsiung Chen, “Extended-Stopband Bandpass Filter Using Both Half- and Quarter- Wavelength Resonators,”IEEE Microwave and Wireless Components Letters, vol.16, no.1, pp. 43-45, Jan. 2006.
[6]Ching-Luh Hsu and Jen-Tsi Kuo, “Design of Cross Coupled Quarter-Wave SIR Filters With Plural Transmission Zeros,”IEEE MTT-S Int. Microwave Symp. Digest, pp. 1205-1208, June. 2006.
[7]Dal Ahn, Jun-Seok Park, Chul-Soo Kim,Juno Kim, Yongxi Qian, and Tatsuo Itoh, “A Design of the Low-Pass Filter Using the Novel Microstrip Defected Ground Structure,”IEEE Trans. Microwave Theoryand Tech., Vol. 49, No. 1, pp. 86-93, Jan. 2001.
[8]David K. Cheng, “Field and Wave Electromagnetics,”2nded, ch. 9, Addison Wesly.
[9]E.M.T. and J.T. Bolljahn, “Coupled Strip Transmission Line Filter and Directional couplers”, IEEE Trans. Microwave Theory and Techniques, vol.4, pp. 75-81, Apr. 1956.
[10]G. Dacheng, “A compact step impedance stripline bandpass filter,” Circuits and Systems Conference Proceedings, China, 16-17 Jun. 1991, vol. 2, pp. 960–963.
[11]G.L. Mattaei, L. Young, and E.M.T. Jones, Microwave Filters, Impedance-Matching Network, and Coupling Structures, Artech House, 1980.
[12]Hang Wang and Lei Zhu, “Microstrip Bandpass Filters With Ultra-Broad Rejection Band Using Stepped Impedance Resonator and High-Impedance Transformer,”IEEE MTT-S Int. Microwave Symp. Digest, Jun. 2005, pp. 683-686.
[13]J.S. Hong and M.J. Lancaster, Microstrip Filters for RF/Microwave Applications, New York: Jonh Wiley & Sons, 2001, Ch. 5.
[14]J.S. Hong and M.J. Lancaster. Microstrip filters for RF/Microwave applications.,New York: Wiley.
[15]J.T. Kuo, T.H. Yeh, and C.C. Yeh, “Design of microstrip bandpass filters with adual-passband response,“ IEEE Trans. Microwave Theory Tech., vol. 53, no. 4, pp.1331-1337, Apr. 2005.
[16]Jen-Tai Kuo and Eric Shih, “Microstrip Stepped Impedance Resonator Bandpass Filter With a Extended Optimal Rejection Bandwidth,”IEEE Trans. Microwave Theory and Techniques, vol.51, no.5, pp. 1554-1559, May.2003.
[17]Jen-Tsai Kuo and Eric Shih,“Stepped Impedance Resonator Bandpass Filters with Tunable Transmission Zero and Its Application to Wide Stopband Design,”IEEE MTT-S Desigt, vol.51, pp. 1613-1616.
[18]Jen-Tsi, Ming-Jyh Maa, and Ping-Han Lu, “A Microstrip Elliptic Funtion With Compact Miniaturized Hairpin Resonators, IEEE Microwave and Guided Wave Letters, vol.10, no.3, pp. 94-95, Mar. 2000.
[19]Jia-Sheng Hong and M. J. Lancaster, Microstrip Filter for RF/Microwave Applications, John Wily & Sons, 2001, ch.8.
[20]Jong-Sik Lim, Chul-Soo Kim, Dal Ahn, Yong-Chae Jeong, and Sangwook Nam, “Design of Low-Pass Filters Using Defected Ground Structure,”IEEE Trans. Microwave Theory and Tech., Vol. 53, No. 8
[21]M. Sagawa, M. Makimoto, S. Yamashita, “Geometrical structures andfundamental characteristics of microwave stepped-impedance resonators,” IEEETrans. Microwave Theory Tech., vol. 45, no. 7, pp. 1078-1085, Jul. 1997.
[22]M.Makimoto, S. Yamashita, Microwave Resonators and Filters for Wireless Communication Theory, Design and Application, 2000, ch. 1.
[23]Mitsuo Makimoto and Sadahiko Yamashita, “Bandpass Filters Using Parallel Coupled Stripline Stepped Impedance Resonators,”IEEE Trans. Microwave Theory and Techniques, vol. MTT-28, no.12, pp.1413-1417, Dec. 1980.
[24]Morikazu Sagawa, Mitsuo Makimoto, and Sadahiko Yamashita, “Geometrical Structures and Fundamental Characteristics of Microwave Stepped Impedance Resonators,”IEEE Trans. Microwave Theory and Techniques, vol.45, no.7, pp.1078-1085, July 1997.
[25]P. I. Richard, “Resistor Transmission Line Circuits”, Proc. Of the IRE, vol. 36, pp. 217-220, Feb. 1948.
[26]Pai-Yi Hsiao, Ro-Min Weng, and Yin-Hsin Chang, “A Miniaturized Dual-Band Bandpass Filter Using Open-Loop and SIR-DGS Resonators,”pp.191-194.
[27]Sheng-Yuan Lee and Chih-Ming Tsai, “New Cross-coupled Filter Design Using Improved Hairpin Resonators”, IEEE Trans. Microwave Theory and Techniques,vol. 48, no.12, pp. 2482-2490, Dec. 2000.
[28]Sheng-Yuan Lee, and Chih-Ming Tsai, “A New Network Model for Miniaturized Hairpin Resonators and Its Applications”, IEEE MTT-S Int. Microwave Symp. Digest, Jun. 2000, pp.1161-1164.
[29]Shih-Cheng Lin, Pu-Hua Deng, Yo-Shen Lin, Chi-Hsueh Wang, and Chun Hsiung Chen, “Wide-Stopband Microstrip Bandpass Filters Using Dissimilar Quarter-Wavelength Stepped-Impedance Resonators,”IEEE Trans. Microwave Theory and Techniques, vol.54, no.3, pp. 1011-1018, Mar.2006.
[30]T. Ishizaki and T. Uwano, “A stepped impedance comb-line filter fabricated byusing ceramic lamination technique,” IEEE MTT-S Digest, vol. 2, pp. 617-620, 23-27 May 1994.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top