(3.238.7.202) 您好!臺灣時間:2021/03/04 01:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林沅臻
研究生(外文):Yuan-Jen Lin
論文名稱:檳榔鹼對核苷酸剪切修復的抑制作用
論文名稱(外文):Negative regulation of nucleotide excision repair by arecoline
指導教授:林常申
指導教授(外文):Chang-Shen Lin
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:中文
論文頁數:85
中文關鍵詞:檳榔鹼核苷酸剪切修復
外文關鍵詞:arecolinenucleotide excision repairDDB2XPBXPD
相關次數:
  • 被引用被引用:1
  • 點閱點閱:200
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗室過去發現arecoline可藉由抑制p53的表現以及其轉錄活性而抑制UV誘導的DNA修復能力。而UV誘導的DNA修復主要透過是核苷酸剪切修復,因此arecoline可能會抑制細胞中的核苷酸剪切修復機制。本論文即是要探討arecoline抑制核苷酸剪切修復可能的分子機制。在參與核苷酸剪切修復的分子中,DDB2主要扮演辨識DNA損傷的角色,XPB與XPD則具有解螺旋活性可打開受損的雙股DNA。本篇研究發現:arecoline處理後,DDB2 啟動子活性及其mRNA表現量受到抑制,但DDB2蛋白質的表現量卻增加,這可能和arecoline影響DDB2蛋白質的降解有關。DDB2的降解如被抑制則可能影響後續核苷酸剪切修復的進行。另外,藉由共同免疫沈澱法及免疫螢光染色的研究發現:arecoline也可能影響p53與XPB及XPD蛋白質之間的交互作用,但此結果對核苷酸剪切修復的影響仍有待進一步的研究。綜合以上結果,本篇論文發現arecoline確實會影響一些核苷酸剪切修復分子,這可能和arecoline抑制DNA修復有密切關係。

Previously our studies showed that arecoline could inhibit DNA repair of UV-induced damages through, at least partly, repressing p53’s expression and transactivation activity. Since UV-induced damages are primarily repaired by the mechanism of nucleotide excision repair (NER), we hypothesized that arecoline might inhibit DNA repair via interfering with the machineries of NER. Among the factors involving in NER, DDB2 plays a role in recognition of DNA lesions. XPB and XPD contain helicase activity and can unwind the damaged double-strand DNA. To explore the molecular mechanism underlying arecoline-mediated inhibition of DNA repair, we examined the effect of arecoline on the promoter activity and expression of DDB2. The results showed that arecoline suppressed DDB2 promoter and mRNA expression. In contrast, the constitutive DDB2 protein level was increased by arecoline treatment, implying that arecoline might affect DDB2 protein stability or its degradation. The degradation of DDB2 is necessary for the downstream repair process of NER. Besides, co-immunoprecipitation and immunofluorescent assay showed that arecoline might affect the protein interaction of p53 and XPB or p53 and XPD. However, the consequences of these arecoline’s effects on NER wait for further investigation. Taken together, this study demonstrated that arecoline indeed could interfere with certain NER genes that might be critical for arecoline-mediated repression of NER.

中文摘要 1
英文摘要 2
一、前言 3
二、研究方向與目的 11
三、研究材料與方法 12
四、結果 34
五、討論 43
六、參考文獻 47
七、結果圖表 53
八、附錄 70
九、附件 75


1E. E. Vokes, R. R. Weichselbaum, S. M. Lippman, and W. K. Hong, "Head and neck cancer," N Engl J Med 328 (3), 184-194 (1993).
2Y. J. Chen, J. T. Chang, C. T. Liao, H. M. Wang, T. C. Yen, C. C. Chiu, Y. C. Lu, H. F. Li, and A. J. Cheng, "Head and neck cancer in the betel quid chewing area: recent advances in molecular carcinogenesis," Cancer Sci 99 (8), 1507-1514 (2008).
3A. Baez, "Genetic and environmental factors in head and neck cancer genesis," J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 26 (2), 174-200 (2008).
4P. Boffetta, A. Mashberg, R. Winkelmann, and L. Garfinkel, "Carcinogenic effect of tobacco smoking and alcohol drinking on anatomic sites of the oral cavity and oropharynx," Int J Cancer 52 (4), 530-533 (1992).
5J. H. Jeng, M. C. Chang, and L. J. Hahn, "Role of areca nut in betel quid-associated chemical carcinogenesis: current awareness and future perspectives," Oral Oncol 37 (6), 477-492 (2001).
6Y. C. Ko, Y. L. Huang, C. H. Lee, M. J. Chen, L. M. Lin, and C. C. Tsai, "Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan," J Oral Pathol Med 24 (10), 450-453 (1995).
7A. Winstock, "Areca nut-abuse liability, dependence and public health," Addict Biol 7 (1), 133-138 (2002).
8P. C. Gupta and S. Warnakulasuriya, "Global epidemiology of areca nut usage," Addict Biol 7 (1), 77-83 (2002).
9"Betel-quid and areca-nut chewing and some areca-nut derived nitrosamines," IARC Monogr Eval Carcinog Risks Hum 85, 1-334 (2004).
10"Betel-quid and areca-nut chewing," IARC Monogr Eval Carcinog Risk Chem Hum 37, 137-202 (1985).
11Y. C. Chang, K. W. Tai, M. H. Cheng, L. S. Chou, and M. Y. Chou, "Cytotoxic and non-genotoxic effects of arecoline on human buccal fibroblasts in vitro," J Oral Pathol Med 27 (2), 68-71 (1998); W. Harvey, A. Scutt, S. Meghji, and J. P. Canniff, "Stimulation of human buccal mucosa fibroblasts in vitro by betel-nut alkaloids," Arch Oral Biol 31 (1), 45-49 (1986).
12H. F. Stich and F. Anders, "The involvement of reactive oxygen species in oral cancers of betel quid/tobacco chewers," Mutat Res 214 (1), 47-61 (1989).
13W. C. Chang, C. F. Hsiao, H. Y. Chang, T. Y. Lan, C. A. Hsiung, Y. T. Shih, and T. Y. Tai, "Betel nut chewing and other risk factors associated with obesity among Taiwanese male adults," Int J Obes (Lond) 30 (2), 359-363 (2006).
14A. M. Yen, Y. H. Chiu, L. S. Chen, H. M. Wu, C. C. Huang, B. J. Boucher, and T. H. Chen, "A population-based study of the association between betel-quid chewing and the metabolic syndrome in men," Am J Clin Nutr 83 (5), 1153-1160 (2006).
15R. Maher, A. J. Lee, K. A. Warnakulasuriya, J. A. Lewis, and N. W. Johnson, "Role of areca nut in the causation of oral submucous fibrosis: a case-control study in Pakistan," J Oral Pathol Med 23 (2), 65-69 (1994).
16J. F. Tsai, L. Y. Chuang, J. E. Jeng, M. S. Ho, M. Y. Hsieh, Z. Y. Lin, and L. Y. Wang, "Betel quid chewing as a risk factor for hepatocellular carcinoma: a case-control study," Br J Cancer 84 (5), 709-713 (2001).
17M. T. Wu, Y. C. Lee, C. J. Chen, P. W. Yang, C. J. Lee, D. C. Wu, H. K. Hsu, C. K. Ho, E. L. Kao, and J. M. Lee, "Risk of betel chewing for oesophageal cancer in Taiwan," Br J Cancer 85 (5), 658-660 (2001).
18H. F. Stich, W. Stich, and B. B. Parida, "Elevated frequency of micronucleated cells in the buccal mucosa of individuals at high risk for oral cancer: betel quid chewers," Cancer Lett 17 (2), 125-134 (1982).
19L. P. Shirname, M. M. Menon, and S. V. Bhide, "Mutagenicity of betel quid and its ingredients using mammalian test systems," Carcinogenesis 5 (4), 501-503 (1984).
20G. B. Panigrahi and A. R. Rao, "Chromosome-breaking ability of arecoline, a major betel-nut alkaloid, in mouse bone-marrow cells in vivo," Mutat Res 103 (2), 197-204 (1982).
21K. Sundqvist, Y. Liu, J. Nair, H. Bartsch, K. Arvidson, and R. C. Grafstrom, "Cytotoxic and genotoxic effects of areca nut-related compounds in cultured human buccal epithelial cells," Cancer Res 49 (19), 5294-5298 (1989).
22B. Prokopczyk, A. Rivenson, P. Bertinato, K. D. Brunnemann, and D. Hoffmann, "3-(Methylnitrosamino)propionitrile: occurrence in saliva of betel quid chewers, carcinogenicity, and DNA methylation in F344 rats," Cancer Res 47 (2), 467-471 (1987); B. Prokopczyk, P. Bertinato, and D. Hoffmann, "Cyanoethylation of DNA in vivo by 3-(methylnitrosamino)propionitrile, an Areca-derived carcinogen," Cancer Res 48 (23), 6780-6784 (1988); G. Wenke and D. Hoffmann, "A study of betel quid carcinogenesis. 1. On the in vitro N-nitrosation of arecoline," Carcinogenesis 4 (2), 169-172 (1983).
23Y. S. Tsai, K. W. Lee, J. L. Huang, Y. S. Liu, S. H. Juo, W. R. Kuo, J. G. Chang, C. S. Lin, and Y. J. Jong, "Arecoline, a major alkaloid of areca nut, inhibits p53, represses DNA repair, and triggers DNA damage response in human epithelial cells," Toxicology 249 (2-3), 230-237 (2008).
24Y. C. Wang, Y. S. Tsai, J. L. Huang, K. W. Lee, C. C. Kuo, C. S. Wang, A. M. Huang, J. Y. Chang, Y. J. Jong, and C. S. Lin, "Arecoline arrests cells at prometaphase by deregulating mitotic spindle assembly and spindle assembly checkpoint: implication for carcinogenesis," Oral Oncol 46 (4), 255-262 (2010).
25J. H. Hoeijmakers, "Genome maintenance mechanisms for preventing cancer," Nature 411 (6835), 366-374 (2001).
26K. Sugasawa, "Regulation of damage recognition in mammalian global genomic nucleotide excision repair," Mutat Res 685 (1-2), 29-37 (2010).
27M. Fousteri and L. H. Mullenders, "Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects," Cell Res 18 (1), 73-84 (2008).
28T. Nouspikel, "DNA repair in mammalian cells : Nucleotide excision repair: variations on versatility," Cell Mol Life Sci 66 (6), 994-1009 (2009); L. Liu, J. Lee, and P. Zhou, "Navigating the nucleotide excision repair threshold," J Cell Physiol 224 (3), 585-589 (2010); S. W. Wijnhoven, E. M. Hoogervorst, H. de Waard, G. T. van der Horst, and H. van Steeg, "Tissue specific mutagenic and carcinogenic responses in NER defective mouse models," Mutat Res 614 (1-2), 77-94 (2007).
29R. Dualan, T. Brody, S. Keeney, A. F. Nichols, A. Admon, and S. Linn, "Chromosomal localization and cDNA cloning of the genes (DDB1 and DDB2) for the p127 and p48 subunits of a human damage-specific DNA binding protein," Genomics 29 (1), 62-69 (1995).
30T. Stoyanova, N. Roy, D. Kopanja, P. Raychaudhuri, and S. Bagchi, "DDB2 (damaged-DNA binding protein 2) in nucleotide excision repair and DNA damage response," Cell Cycle 8 (24), 4067-4071 (2009).
31T. Itoh, D. Cado, R. Kamide, and S. Linn, "DDB2 gene disruption leads to skin tumors and resistance to apoptosis after exposure to ultraviolet light but not a chemical carcinogen," Proc Natl Acad Sci U S A 101 (7), 2052-2057 (2004).
32T. Yoon, A. Chakrabortty, R. Franks, T. Valli, H. Kiyokawa, and P. Raychaudhuri, "Tumor-prone phenotype of the DDB2-deficient mice," Oncogene 24 (3), 469-478 (2005).
33M. G. Kapetanaki, J. Guerrero-Santoro, D. C. Bisi, C. L. Hsieh, V. Rapic-Otrin, and A. S. Levine, "The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites," Proc Natl Acad Sci U S A 103 (8), 2588-2593 (2006).
34A. Takedachi, M. Saijo, and K. Tanaka, "DDB2 complex-mediated ubiquitylation around DNA damage is oppositely regulated by XPC and Ku and contributes to the recruitment of XPA," Mol Cell Biol 30 (11), 2708-2723 (2010); T. T. Huang and A. D. D''Andrea, "Regulation of DNA repair by ubiquitylation," Nat Rev Mol Cell Biol 7 (5), 323-334 (2006).
35F. Coin, V. Oksenych, and J. M. Egly, "Distinct roles for the XPB/p52 and XPD/p44 subcomplexes of TFIIH in damaged DNA opening during nucleotide excision repair," Mol Cell 26 (2), 245-256 (2007).
36S. Hashimoto and J. M. Egly, "Trichothiodystrophy view from the molecular basis of DNA repair/transcription factor TFIIH," Hum Mol Genet 18 (R2), R224-230 (2009).
37S. A. Gatz and L. Wiesmuller, "p53 in recombination and repair," Cell Death Differ 13 (6), 1003-1016 (2006); E. M. Hoogervorst, H. van Steeg, and A. de Vries, "Nucleotide excision repair- and p53-deficient mouse models in cancer research," Mutat Res 574 (1-2), 3-21 (2005); K. H. Vousden and D. P. Lane, "p53 in health and disease," Nat Rev Mol Cell Biol 8 (4), 275-283 (2007).
38S. Sengupta and C. C. Harris, "p53: traffic cop at the crossroads of DNA repair and recombination," Nat Rev Mol Cell Biol 6 (1), 44-55 (2005).
39M. E. Fitch, I. V. Cross, and J. M. Ford, "p53 responsive nucleotide excision repair gene products p48 and XPC, but not p53, localize to sites of UV-irradiation-induced DNA damage, in vivo," Carcinogenesis 24 (5), 843-850 (2003).
40M. T. Liu, Y. R. Chen, S. C. Chen, C. Y. Hu, C. S. Lin, Y. T. Chang, W. B. Wang, and J. Y. Chen, "Epstein-Barr virus latent membrane protein 1 induces micronucleus formation, represses DNA repair and enhances sensitivity to DNA-damaging agents in human epithelial cells," Oncogene 23 (14), 2531-2539 (2004).
41C. S. Lin, H. H. Kuo, J. Y. Chen, C. S. Yang, and W. B. Wang, "Epstein-barr virus nuclear antigen 2 retards cell growth, induces p21(WAF1) expression, and modulates p53 activity post-translationally," J Mol Biol 303 (1), 7-23 (2000).
42P. W. Laird, A. Zijderveld, K. Linders, M. A. Rudnicki, R. Jaenisch, and A. Berns, "Simplified mammalian DNA isolation procedure," Nucleic Acids Res 19 (15), 4293 (1991).
43L. C. Gillet and O. D. Scharer, "Molecular mechanisms of mammalian global genome nucleotide excision repair," Chem Rev 106 (2), 253-276 (2006).
44A. F. Nichols, T. Itoh, F. Zolezzi, S. Hutsell, and S. Linn, "Basal transcriptional regulation of human damage-specific DNA-binding protein genes DDB1 and DDB2 by Sp1, E2F, N-myc and NF1 elements," Nucleic Acids Res 31 (2), 562-569 (2003).
45S. Bergink and S. Jentsch, "Principles of ubiquitin and SUMO modifications in DNA repair," Nature 458 (7237), 461-467 (2009); L. Bedford, J. Lowe, L. R. Dick, R. J. Mayer, and J. E. Brownell, "Ubiquitin-like protein conjugation and the ubiquitin-proteasome system as drug targets," Nat Rev Drug Discov (2010); H. D. Ulrich and H. Walden, "Ubiquitin signalling in DNA replication and repair," Nat Rev Mol Cell Biol 11 (7), 479-489 (2010).
46J. M. Egly, "The 14th Datta Lecture. TFIIH: from transcription to clinic," FEBS Lett 498 (2-3), 124-128 (2001).
47"IARC monographs on the evaluation of carcinogenic risks to humans. Ingested nitrate and nitrite, and cyanobacterial peptide toxins," IARC Monogr Eval Carcinog Risks Hum 94, v-vii, 1-412 (2010).
48S. Giri, J. R. Idle, C. Chen, T. M. Zabriskie, K. W. Krausz, and F. J. Gonzalez, "A metabolomic approach to the metabolism of the areca nut alkaloids arecoline and arecaidine in the mouse," Chem Res Toxicol 19 (6), 818-827 (2006).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔