跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/04/02 02:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝雅蕙
研究生(外文):Ya-Hui Hsieh
論文名稱:毛細管電泳法對阿茲海默症患者服用乙醯膽鹼酯酶抑制劑及其活性胺基酸之微量分析
論文名稱(外文):Trace analysis of AChEIs and active amino acids in patients with Alzheimer’s disease by capillary electrophoresis
指導教授:陳素惠陳素惠引用關係
指導教授(外文):Su-Hwei Chen
學位類別:博士
校院名稱:高雄醫學大學
系所名稱:藥學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:107
中文關鍵詞:乙醯膽鹼酯酶乙醯膽鹼酯酶乙醯膽鹼酯酶乙醯膽鹼酯酶乙醯膽鹼酯酶
外文關鍵詞:Alzheimer&apos&aposs diseaseCapillary electrophoresisAcetylcholinesterase inhibotorsExcitatory amino acids
相關次數:
  • 被引用被引用:0
  • 點閱點閱:322
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文為利用毛細管電泳法(capillary electrophoresis; CE)分別對藥物及胺基酸發展微量的分析方法,主要的研究包括人體血漿中阿茲海默症用藥-乙醯膽鹼酯酶抑制劑(acetylcholinesterase inhibitors;AChEIs)的分析,以及興奮性胺基酸(excitatory amino acids;EAAs) aspartate與glutamate其光學異構物於人體血漿及腦脊髓液的分析。這兩個研究分別應用在阿茲海默症患者服用AChEIs後體內濃度測定以及患者體內EAAs濃度測定。其成果摘要如下:

甲、微胞電動層析法對血漿中AChEIs藥品的分析,並應用於阿茲海默症患者的用藥監測
本研究建立一個簡單且具感度的微胞電動層析法(micellar electrokinetic chromatography;MEKC)配合紫外光偵測,同時分析血漿中AChEIs的藥物galantamine、rivastigmine及rivastigmine代謝物NAP 226-90濃度。分析前,以液相萃取法(liquid-liquid extraction;LLE)作為樣品前處理,使用diethyl ether萃取後再進行MEKC的分析定量。定量分析使用熔矽毛細管全長為30.2 cm、內徑50.0 μm (有效長度20.0 cm),在25℃之下,待測物可於10分鐘內達到有效的分離,分離所用的緩衝溶液為25 mM Tris (pH 5.0) 內含160 mM sodium octanesulfonate (SOS)、20% ACN及0.01% polyvinyl pyrrolidone (PVP)。此分析方法劇良好的感度,galantamine、rivastigmine及NAP 226-90的偵測極限分別為0.25、0.125及0.125 ng/ mL;此外,此方法也具良好的精密度與準確度。本研究應用於評估rivastigmine及其代謝物NAP 226-90的藥物血中濃度與時間的變化,也應用在11位阿茲海默症患者,口服Reminyl® (8 mg galantamine/ capsule)或Exelon® (3 mg rivastigmine/ capsule)後,監測其血漿中galantamine或rivastigmine及rivastigmine代謝物NAP 226-90的濃度。

乙、毛細管電泳法對生物檢品中興奮性胺基酸aspartate及glutamate光學異構物的同時分析,並應用於探討興奮性胺基酸的濃度與阿茲海默症之間的關係
本研究建立了簡單的區帶電泳法(capillary zone electrophoresis;CZE) 搭配雷射誘導螢光 (laser-induced fluorescence; LIF) 偵測器,分析aspartate (Asp)及glutamate (Glu)之光學異構物,並測定其在阿茲海默症病患的血漿與腦脊髓液中的含量。分析前,樣品先以離心過濾裝置(分子量3000)去除大分子的蛋白質,再將溶於DMSO之10 mM 6-carboxyfluorescein N-hydroxysuccinimide ester,以體積比5:1 (濾液:6-carboxyfluorescein N-hydroxysuccinimide ester) 的比例進行衍生反應,在室溫下以超音波震盪2小時。衍生後以水稀釋100倍再注入毛細管電泳儀進行分析,以0.5 psi注入5秒,分析的緩衝溶液為borate buffer 50 mM (pH 9.0)內含γ-CD 6 mM及0.1% PVP,分離電壓20 kV。本研究將應用於26位阿茲海默症患者,測定阿茲海默症患者體內D/L Asp及D/L Glu的濃度,並對照其臨床失智評估量表及簡易智能量表的指數,討論患者體內EAAs光學異構物濃度與疾病之相關性。研究結果顯示,病患血漿中的L-Asp濃度與臨床失智評估量表的指數據有中度負相關。

In this thesis, analytical methods were developed for the trace determination of drugs and amino acids by capillary electrophoresis (CE). The major studies are focused on the determination of acetylcholonesterase inhibitors (AChEIs) in plasma and chiral analysis of excitatory amino acids (EAAs), aspartate and glutamate, in human plasma and CSF. The two studies were applied in the evaluation of AChEIs concentrations and chiral excitatory amino acids concentrations in patients with Alzheimer’s disease, respectively. The summaries were listed as follows:

A. Simultaneous determination of galantamine, rivastigmine and NAP 226-90 in plasma by MEKC and its application in Alzheimer’s disease
A simple and sensitive MEKC with UV detection was developed for the simultaneous determination of AChEIs, including galantamine, rivastigmine and major metabolite NAP 226-90 in plasma. A sample pretreatment by liquid–liquid extraction with diethylether and subsequent quantification by MEKC was used. The optimum separation for these analytes was achieved in less than 10 min at 25℃ with a fused-silica capillary of 30.2 cm× 50 μm id (effective length 20 cm) and the run buffer was consisting of 25 mM Tris buffer (pH 5.0) with 160 mM sodium octanesulfonate, 20% ACN and 0.01% plyvinylpyrrolidone. In this method, the LODs of galantamine, rivastigmine and NAP 226-90 were 0.25, 0.125 and 0.125 ng/ mL, respectively. Besides, this MEKC method possessed good precision and accuracy. This method was applied in the drug concentration–time profile study of rivastigmine and its metabolite, NAP 226-90, and also applied in monitoring galantamine or rivastigmine and its metabolite NAP 226-90 in 11 Alzheimer’s disease patients’ plasma after oral administration of the commercial products Reminyl® (8 mg galantamine/capsule) or Exelon® (3 mg rivastigmine capsule), respectively.

B. Chiral analysis of aspartate and glutamate in biological samples by capillary electrophoresis and application in investigating the relationship between EAAs concentrations and Alzheimer’s disease
A simple CD-mediated CZE method equipped with laser-induced fluorescence (LIF) detector was developed in this study for chiral analysis of excitatory amino acids (EAAs), aspartate and glutamate, and to determine the EAAs concentrations in plasma and CSF of patients with Alzheimer’s disease. Before analysis, plasma and CSF samples were pretreated with centrifugal filter devices for removing proteins with high molecular weight (molecular weight cut off 3000) and then derivatized with 10 mM 6-carboxyfluorescein N-hydroxysuccinimide ester/ DMSO. The ratio of filtrate to the derivatizing reagent is 5 (v/v= 5:1). Mixed samples were sonicated for 2 h at 25℃ for chemical derivatization. After the derivatization reaction, reacted samples were diluted 100-fold with water and then hydrodynamically injected into CE instrument (0.5 psi for 5 s). The separation buffer was consisting of borate buffer 50 mM (pH 9.0) with 6 mM γ-CD and 0.1% PVP. The separation voltage was set at 20 kV. This method was applied in determining the EAAs concentrations of 26 patients with Alzheimer’s disease. We compared the EAAs concentrations and CDR-SB or MMSE and then discussed the relationship between EAAs concentrations and Alzheimer’s disease. From the results, there’s a moderately negative correlation between L-Asp concentration in plasma and CDR-SB values.


中文摘要---------------------------------------------------i
英文摘要--------------------------------------------------iv
目錄-----------------------------------------------------vii
圖目錄----------------------------------------------------xi
表目錄----------------------------------------------------xv
縮寫對照表-----------------------------------------------xvi
毛細管電泳法對阿茲海默症患者服用乙醯膽鹼酯酶抑制劑及其活性胺基酸之分析-------------------------------------------------1
壹、緒論---------------------------------------------------1
貳、研究方法及步驟----------------------------------------12
甲、微胞電動層析法對血漿中AChEIs藥品的分析,並應用於阿茲海默症患者的用藥監測------------------------------------------12
一、試藥及材料--------------------------------------------12
二、儀器設備----------------------------------------------14
三、實驗方法----------------------------------------------15
1. 試藥溶液之配製-----------------------------------------15
2. 毛細管電泳條件-----------------------------------------16
3. 樣品前處理---------------------------------------------17
4. 基本分析條件之探討-------------------------------------18
5. 臨界微胞濃度(CMC)測定----------------------------------20
6. 分析方法驗證-------------------------------------------21
7. 應用---------------------------------------------------22
乙、毛細管電泳法對生物檢品中興奮性胺基酸aspartate及glutamate光學異構物的同時分析,並應用於探討興奮性胺基酸的濃度與阿茲海默症之間的關係--------------------------------------------23
一、試藥及材料--------------------------------------------23
二、儀器設備----------------------------------------------25
三、實驗方法----------------------------------------------26
1. 試藥溶液之配製-----------------------------------------26
2. 毛細管電泳條件-----------------------------------------28
3. 樣品前處理及衍生步驟-----------------------------------29
4. 基本分析條件之探討-------------------------------------29
5. 分析方法驗證-------------------------------------------31
6. 應用---------------------------------------------------32
参、結果與討論--------------------------------------------33
甲、微胞電動層析法對血漿中AChEIs藥品的分析,並應用於阿茲海默症患者的用藥監測------------------------------------------33
一、樣品前處理之探討--------------------------------------33
二、樣品回溶溶媒的影響------------------------------------34
1. 有機溶媒的種類-----------------------------------------34
2. 回溶溶媒中H3PO4的添加----------------------------------35
三、緩衝溶液的最佳化選擇----------------------------------37
1. SOS及ACN的濃度-----------------------------------------38
2. Tris的濃度及pH值---------------------------------------42
四、分析方法驗證------------------------------------------44
五、應用--------------------------------------------------48
乙、毛細管電泳法對生物檢品中興奮性胺基酸aspartate及glutamate光學異構物的同時分析,並應用於探討興奮性胺基酸的濃度與阿茲海默症之間的關係--------------------------------------------50
一、樣品前處理--------------------------------------------52
二、衍生條件討論------------------------------------------52
1. 衍生方式、溫度及時間的討論-----------------------------52
2. 衍生試劑的溶媒選擇-------------------------------------53三、緩衝溶液最適條件討論----------------------------------54
1.緩衝溶液pH之討論----------------------------------------54
2. Borate buffer濃度的討論--------------------------------57
3. Cyclodextrin的選擇與γ-CD濃度的討論--------------------58
4. PVP比例的討論------------------------------------------62
5. 選擇性-------------------------------------------------63
四、分析方法之驗證----------------------------------------65
五、應用--------------------------------------------------69
肆、結論--------------------------------------------------73
參考文獻--------------------------------------------------74


1.D. G. Waller, A. G. Renwick, K. Hillier (Eds), Medical Pharmacology and Therapeutics, Elsevier Saunders, 2nd, 2005, p 156.
2.C. P. Hughes, L. Berg, W. L. Danziger, L. A. Coben, R. L. Martin, A new clinical scale for the staging of dementia. Br J Psychiatry 140 (1982) 566-72.
3.W. S. Lim, M. S. Chong, S. Sahadevan, Utility of the clinical dementia rating in Asian populations. Clin Med Res 5 (2007) 61-70.
4.M. F. Folstein, S. E. Folstein, P. R. McHugh, "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12 (1975) 189-98.
5.F. Franco-Marina, J. J. Garcia-Gonzalez, F. Wagner-Echeagaray, J. Gallo, O. Ugalde, S. Sanchez-Garcia, C. Espinel-Bermudez, T. Juarez-Cedillo, M. A. Rodriguez, C. Garcia-Pena, The Mini-mental State Examination revisited: ceiling and floor effects after score adjustment for educational level in an aging Mexican population. Int Psychogeriatr 22 (2010) 72-81.
6.Z. S. Khachaturian, Diagnosis of Alzheimer''s disease. Arch Neurol 42 (1985) 1097-105.
7.L. Li, A. Sengupta, N. Haque, I. Grundke-Iqbal, K. Iqbal, Memantine inhibits and reverses the Alzheimer type abnormal hyperphosphorylation of tau and associated neurodegeneration. FEBS Lett 566 (2004) 261-9.
8.V. W. DeLaGarza, Pharmacologic treatment of Alzheimer''s disease: an update. Am Fam Physician 68 (2003) 1365-72.
9.R. T. Bartus, R. L. Dean, 3rd, B. Beer, A. S. Lippa, The cholinergic hypothesis of geriatric memory dysfunction. Science 217 (1982) 408-14.
10.P. T. Francis, A. Nordberg, S. E. Arnold, A preclinical view of cholinesterase inhibitors in neuroprotection: do they provide more than symptomatic benefits in Alzheimer''s disease? Trends Pharmacol Sci 26 (2005) 104-11.
11.M. M. Mesulam, A. Guillozet, P. Shaw, A. Levey, E. G. Duysen, O. Lockridge, Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience 110 (2002) 627-39.
12.M. R. Farlow, Pharmacokinetic profiles of current therapies for Alzheimer''s disease: implications for switching to galantamine. Clin Ther 23 Suppl A (2001) A13-24
13.A. Enz, A. Chappuis, A. Dattler, A simple, rapid and sensitive method for simultaneous determination of rivastigmine and its major metabolite NAP 226-90 in rat brain and plasma by reversed-phase liquid chromatography coupled to electrospray ionization mass spectrometry. Biomed Chromatogr 18 (2004) 160-6.
14.A. Lleo, S. M. Greenberg, J. H. Growdon, Current pharmacotherapy for Alzheimer''s disease. Annu Rev Med 57 (2006) 513-33.
15.F. Li, J. Z. Tsien, Memory and the NMDA receptors. N Engl J Med 361 (2009) 302-3.
16.F. Fonnum, Glutamate: a neurotransmitter in mammalian brain. J Neurochem 42 (1984) 1-11.
17.A. Ghosh, Neurobiology. Learning more about NMDA receptor regulation. Science 295 (2002) 449-51.
18.G. J. Zipfel, D. J. Babcock, J. M. Lee, D. W. Choi, Neuronal apoptosis after CNS injury: the roles of glutamate and calcium. J Neurotrauma 17 (2000) 857-69.
19.A. D''Aniello, J. M. Lee, L. Petrucelli, M. M. Di Fiore, Regional decreases of free D-aspartate levels in Alzheimer''s disease. Neurosci Lett 250 (1998) 131-4.
20.J. T. Greenamyre, A. B. Young, Excitatory amino acids and Alzheimer''s disease. Neurobiol Aging 10 (1989) 593-602.
21.S. M. Rothman, J. W. Olney, Glutamate and the pathophysiology of hypoxic--ischemic brain damage. Ann Neurol 19 (1986) 105-11.
22.A. W. Procter, A. M. Palmer, P. T. Francis, S. L. Lowe, D. Neary, E. Murphy, R. Doshi, D. M. Bowen, Evidence of glutamatergic denervation and possible abnormal metabolism in Alzheimer''s disease. J Neurochem 50 (1988) 790-802.
23.U. De Boni, D. R. McLachlan, Controlled induction of paired helical filaments of the Alzheimer type in cultured human neurons, by glutamate and aspartate. J Neurol Sci 68 (1985) 105-18.
24.Y. Sha, C. Deng, Z. Liu, T. Huang, B. Yang, G. Duan, Headspace solid-phase microextraction and capillary gas chromatographic-mass spectrometric determination of rivastigmine in canine plasma samples. J Chromatogr B Analyt Technol Biomed Life Sci 806 (2004) 271-6.
25.A. Karthik, G. S. Subramanian, M. Surulivelrajan, A. Ranjithkumar, S. B. Kamat, Fluorimetric determination of rivastigmine in rat plasma by a reverse phase-high performance liquid chromatographic method. Application to a pharmacokinetic study. Arzneimittelforschung 58 (2008) 205-10.
26.F. Pommier, R. Frigola, Quantitative determination of rivastigmine and its major metabolite in human plasma by liquid chromatography with atmospheric pressure chemical ionization tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 784 (2003) 301-13.
27.S. V. Frankfort, M. Ouwehand, M. J. van Maanen, H. Rosing, L. R. Tulner, J. H. Beijnen, A simple and sensitive assay for the quantitative analysis of rivastigmine and its metabolite NAP 226-90 in human EDTA plasma using coupled liquid chromatography and tandem mass spectrometry. Rapid Commun Mass Spectrom 20 (2006) 3330-6.
28.J. Bhatt, G. Subbaiah, S. Kambli, B. Shah, S. Nigam, M. Patel, A. Saxena, A. Baliga, H. Parekh, G. Yadav, A rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the estimation of rivastigmine in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 852 (2007) 115-21.
29.H. A. Claessens, M. van Thiel, P. Westra, A. M. Soeterboek, High-performance liquid chromatographic determination of galanthamine, a long-acting anticholinesterase drug, in serum, urine and bile. J Chromatogr 275 (1983) 345-53.
30.L. J. Zhang, X. L. Fang, X. N. Li, Q. S. Wang, L. M. Han, Z. W. Zhang, X. Y. Sha, Pharmacokinetics and bioequivalence studies of galantamine hydrobromide dispersible tablet in healthy male Chinese volunteers. Drug Dev Ind Pharm 33 (2007) 335-40.
31.Q. Zhao, M. Brett, N. Van Osselaer, F. Huang, A. Raoult, A. Van Peer, T. Verhaeghe, R. Hust, Galantamine pharmacokinetics, safety, and tolerability profiles are similar in healthy Caucasian and Japanese subjects. J Clin Pharmacol 42 (2002) 1002-10.
32.T. Verhaeghe, L. Diels, R. de Vries, M. De Meulder, J. de Jong, Development and validation of a liquid chromatographic-tandem mass spectrometric method for the determination of galantamine in human heparinised plasma. J Chromatogr B Analyt Technol Biomed Life Sci 789 (2003) 337-46.
33.C. F. de Jong, R. J. Derks, B. Bruyneel, W. Niessen, H. Irth, High-performance liquid chromatography-mass spectrometry-based acetylcholinesterase assay for the screening of inhibitors in natural extracts. J Chromatogr A 1112 (2006) 303-10.
34.J. Malakova, M. Nobilis, Z. Svoboda, M. Lisa, M. Holcapek, J. Kvetina, J. Klimes, V. Palicka, High-performance liquid chromatographic method with UV photodiode-array, fluorescence and mass spectrometric detection for simultaneous determination of galantamine and its phase I metabolites in biological samples. J Chromatogr B Analyt Technol Biomed Life Sci 853 (2007) 265-74.
35.R. V. Nirogi, V. N. Kandikere, K. Mudigonda, S. Maurya, Quantitative determination of galantamine in human plasma by sensitive liquid chromatography-tandem mass spectrometry using loratadine as an internal standard. J Chromatogr Sci 45 (2007) 97-103.
36.L. Pokorna, A. Revilla, J. Havel, J. Patocka, Capillary zone electrophoresis determination of galanthamine in biological fluids and pharmaceutical preparatives: experimental design and artificial neural network optimization. Electrophoresis 20 (1999) 1993-7.
37.Y. Qu, Y. Li, E. Vandenbussche, F. Vandesande, L. Arckens, In vivo microdialysis in the visual cortex of awake cat. II: sample analysis by microbore HPLC-electrochemical detection and capillary electrophoresis-laser-induced fluorescence detection. Brain Res Brain Res Protoc 7 (2001) 45-51.
38.A. Afzal, M. Afzal, A. Jones, D. Armstrong, Rapid determination of glutamate using HPLC technology. Methods Mol Biol 186 (2002) 111-5.
39.O. Spreux-Varoquaux, G. Bensimon, L. Lacomblez, F. Salachas, P. F. Pradat, N. Le Forestier, A. Marouan, M. Dib, V. Meininger, Glutamate levels in cerebrospinal fluid in amyotrophic lateral sclerosis: a reappraisal using a new HPLC method with coulometric detection in a large cohort of patients. J Neurol Sci 193 (2002) 73-8.
40.J. A. Eckstein, G. M. Ammerman, J. M. Reveles, B. L. Ackermann, Analysis of glutamine, glutamate, pyroglutamate, and GABA in cerebrospinal fluid using ion pairing HPLC with positive electrospray LC/MS/MS. J Neurosci Methods 171 (2008) 190-6.
41.K. Buck, P. Voehringer, B. Ferger, Rapid analysis of GABA and glutamate in microdialysis samples using high performance liquid chromatography and tandem mass spectrometry. J Neurosci Methods 182 (2009) 78-84.
42.H. L. Cai, R. H. Zhu, H. D. Li, Determination of dansylated monoamine and amino acid neurotransmitters and their metabolites in human plasma by liquid chromatography-electrospray ionization tandem mass spectrometry. Anal Biochem 396 (2009) 103-11.
43.Y. Song, Y. Feng, M. H. LeBlanc, S. Zhao, Y. M. Liu, Assay of trace D-amino acids in neural tissue samples by capillary liquid chromatography/tandem mass spectrometry. Anal Chem 78 (2006) 8121-8.
44.F. Robert, L. Bert, L. Lambas-Senas, L. Denoroy, B. Renaud, In vivo monitoring of extracellular noradrenaline and glutamate from rat brain cortex with 2-min microdialysis sampling using capillary electrophoresis with laser-induced fluorescence detection. J Neurosci Methods 70 (1996) 153-62.
45.W. H. Church, C. S. Lee, K. M. Dranchak, Capillary electrophoresis of glutamate and aspartate in rat brain dialysate. Improvements in detection and analysis time using cyclodextrins. J Chromatogr B Biomed Sci Appl 700 (1997) 67-75.
46.F. Robert, L. Parisi, L. Bert, B. Renaud, L. Stoppini, Microdialysis monitoring of extracellular glutamate combined with the simultaneous recording of evoked field potentials in hippocampal organotypic slice cultures. J Neurosci Methods 74 (1997) 65-76.
47.S. Tucci, P. Rada, M. J. Sepulveda, L. Hernandez, Glutamate measured by 6-s resolution brain microdialysis: capillary electrophoretic and laser-induced fluorescence detection application. J Chromatogr B Biomed Sci Appl 694 (1997) 343-9.
48.F. Robert, L. Bert, S. Parrot, L. Denoroy, L. Stoppini, B. Renaud, Coupling on-line brain microdialysis, precolumn derivatization and capillary electrophoresis for routine minute sampling of O-phosphoethanolamine and excitatory amino acids. J Chromatogr A 817 (1998) 195-203.
49.J. L. Cao, Y. H. Zhang, J. Gu, W. H. Zhou, G. D. Yang, Y. M. Zeng, Application of combination of capillary electrophoresis with laser-induced fluorescence: measurement of glutamate and arginine in PAG microdialytes of conscions morphine-withdrawal rats. Sheng Li Xue Bao 55 (2003) 612-6.
50.C. C. Klinker, M. T. Bowser, 4-fluoro-7-nitro-2,1,3-benzoxadiazole as a fluorogenic labeling reagent for the in vivo analysis of amino acid neurotransmitters using online microdialysis-capillary electrophoresis. Anal Chem 79 (2007) 8747-54.
51.S. Kaul, M. D. Faiman, C.E. Lunte, Determination of GABA, glutamate and carbamathione in brain microdialysis samples by capillary electrophoresis with fluorescence detection. Electrophoresis 32 (2011) 284-91.
52.L. Fan, Y. Cheng, H. Chen, L. Liu, X. Chen, Z. Hu, Continuous on-line derivatization and selective separation of D-aspartic acid by a capillary electrophoresis system with a continuous sample introduction interface. Electrophoresis 25 (2004) 3163-7.
53.A. Lundqvist, D. T. Chiu, O. Orwar, Electrophoretic separation and confocal laser-induced fluorescence detection at ultralow concentrations in constricted fused-silica capillaries. Electrophoresis 24 (2003) 1737-44.
54.E. E. Patterson, 2nd, S. C. Piyankarage, K. T. Myasein, J. S. Pulido, R. F. Dundervill, 3rd, R. M. Hatfield, S. A. Shippy, A high-efficiency sample introduction system for capillary electrophoresis analysis of amino acids from dynamic samples and static dialyzed human vitreous samples. Anal Bioanal Chem 392 (2008) 409-16.
55.P. L. Weber, T. J. O''Shea, S. M. Lunte, Separation and quantitation of the amino acid neurotransmitters in rat brain by capillary electrophoresis. J Pharm Biomed Anal 12 (1994) 319-24.
56.Z. Quan, Y. M. Liu, Capillary electrophoretic separation of glutamate enantiomers in neural samples. Electrophoresis 24 (2003) 1092-6.
57.H. Miao, S. S. Rubakhin, J. V. Sweedler, Subcellular analysis of D-aspartate. Anal Chem 77 (2005) 7190-4.
58.C. Wang, S. Zhao, H. Yuan, and D. Xiao, Determination of excitatory amino acids in biological fluids by capillary electrophoresis with optical fiber light-emitting diode induced fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci 833 (2006) 129-34.
59.C. A. Vyas, S. M. Rawls, R. B. Raffa, J. G. Shackman, Glutamate and aspartate measurements in individual planaria by rapid capillary electrophoresis. J Pharmacol Toxicol Methods 63 (2011) 119-22.
60.E. M. Javerfalk-Hoyes, U. Bondesson, D. Westerlund, P. E. Andren, Simultaneous analysis of endogenous neurotransmitters and neuropeptides in brain tissue using capillary electrophoresis- microelectrospray-tandem mass spectrometry. Electrophoresis 20 (1999) 1527-32.
61.N. A. Cellar, S. T. Burns, J. C. Meiners, H. Chen, R. T. Kennedy, Microfluidic chip for low-flow push-pull perfusion sampling in vivo with on-line analysis of amino acids. Anal Chem 77 (2005) 7067-73.
62.B. A. Fogarty, K. E. Heppert, T. J. Cory, K. R. Hulbutta, R. S. Martin, S. M. Lunte, Rapid fabrication of poly(dimethylsiloxane)- based microchip capillary electrophoresis devices using CO2 laser ablation. Analyst 130 (2005) 924-30.
63.D. L. Kirschner, M. Jaramillo, T. K. Green, Enantioseparation and stacking of Cyanobenz[f]isoindole-amino acids by reverse polarity capillary electrophoresis and sulfated beta-cyclodextrin. Anal Chem 79 (2007) 736-43.
64.P. Bednar, Z. Aturki, Z. Stransky, S. Fanali, Chiral analysis of UV nonabsorbing compounds by capillary electrophoresis using macrocyclic antibiotics: 1. Separation of aspartic and glutamic acid enantiomers. Electrophoresis 22 (2001) 2129-35.
65.D. Carlavilla, M. V. Moreno-Arribas, S. Fanali, A. Cifuentes, Chiral MEKC-LIF of amino acids in foods: analysis of vinegars. Electrophoresis 27 (2006) 2551-7.
66.S. Wang, L. Fan, S. Cui, CE-LIF chiral separation of aspartic acid and glutamic acid enantiomers using human serum albumin and sodium cholate as dual selectors. J Sep Sci 32 (2009) 3184-90.
67.S. Terabe, K. Otsuka, K. Ichikawa, A. Tsuchiya, T. Ando, Electrokinetic separations with micellar solutions and open-tubular capillaries. Analytical Chemistry 56 (1984) 111-113.
68.J. P. Xu, J. Ji, W. D. Chen, J. C. Shen, Novel biomimetic surfactant: synthesis and micellar characteristics. Macromol Biosci 5 (2005) 164-71.
69.D. A. Skoog, F. J. Holler, S. R. Crouch, Principles of Instrumental Analysis, 6th ed.; Thomson/ Brooks Cole: Belmont, CA, 2007.
70.D. K. Lloyd, Capillary electrophoretic analyses of drugs in body fluids: sample pretreatment and methods for direct injection of biofluids. J Chromatogr A 735 (1996) 29-42.
71.K. D. E. Altria, Capillary Electrophoresis Guidebook: Principle, Operation, and Application, Human Press Inc., New Jersey, 1996, p. 6-7.
72.J. P. Liu, Y. Z. Hsieh, D. Wiesler, M. Novotny, Design of 3-(4-carboxybenzoyl)-2-quinolinecarboxaldehyde as a reagent for ultrasensitive determination of primary amines by capillary electrophoresis using laser fluorescence detection. Anal Chem 63 (1991) 408-12.
73.L. Ossicini, S. Fanali, Enantiomeric separations by electrophoretic techniques. Chromatographia 45 (1997) 428-432.
74.S. Fanali, Bulletin 95-0284 0695, Bio-Rad, Hercules, CA, 1995.
75.C. C. Smith, D. M. Bowen, P. T. Francis, J. S. Snowden, D. Neary, Putative amino acid transmitters in lumbar cerebrospinal fluid of patients with histologically verified Alzheimer''s dementia. J Neurol Neurosurg Psychiatry 48 (1985) 469-71.
76.F. J. Jimenez-Jimenez, J. A. Molina, P. Gomez, C. Vargas, F. de Bustos, J. Benito-Leon, A. Tallon-Barranco, M. Orti-Pareja, T. Gasalla, and J. Arenas, Neurotransmitter amino acids in cerebrospinal fluid of patients with Alzheimer''s disease. J Neural Transm 105 (1998) 269-77.
77.M. A. Kuiper, T. Teerlink, J. J. Visser, P. L. Bergmans, P. Scheltens, E. C. Wolters, L-glutamate, L-arginine and L-citrulline levels in cerebrospinal fluid of Parkinson''s disease, multiple system atrophy, and Alzheimer''s disease patients. J Neural Transm 107 (2000) 183-9.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊