(3.235.139.152) 您好!臺灣時間:2021/05/08 18:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:王松豪
研究生(外文):Wang, Song-Hao
論文名稱:運用於無線通訊之矽鍺(SiGe)混波器晶片設計
論文名稱(外文):Design on SiGe Process Mixer Chip for Wireless Communication Application
指導教授:陳俊達陳俊達引用關係
指導教授(外文):Chen, Jun-Da
口試委員:李世明洪集輝
口試委員(外文):Li, Simon C.Horng, Ji-Hwei
口試日期:2011-06-28
學位類別:碩士
校院名稱:國立金門大學
系所名稱:電資研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:89
中文關鍵詞:吉伯爾混波器超寬頻IEEE 802.11aIEEE 802.11b
外文關鍵詞:Gilbert cell mixerUWBIEEE 802.11aIEEE 802.11b
相關次數:
  • 被引用被引用:1
  • 點閱點閱:155
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一種新型態混波器,以吉伯爾(Gilbert cell)混波器架構為基礎,結合MOS電晶體及BJT電晶體之元件特性,在這目前的技術,這LO 是並串聯開關應用以減少供電電壓和直流電源消耗,並且運用在IEEE 802.11a、IEEE 802.11b 無線區域網路以及UWB系統的降頻混波器,使用TSMC 0.35 微米SiGe BiCMOS製程及TSMC 0.18 微米SiGe BiCMOS製程技術設計,所提出的混波器在各種特性下皆有不錯的表現。
應用於IEEE 802.11a之新型混波器,其主要的優點是低功率消耗、低雜訊,並且還擁有不錯的線性度、轉換增益以及隔離度。模擬結果達到:14.1dB的轉換增益,0 dBm的三階截止點,6.93 dB的雙邊帶雜訊指數,RF-IF、LO-RF、LO-IF隔離度分別為56 dB、70 dB、92 dB,在供應電壓為1.5 V時,整體功率消耗為2.31 mW。
應用於IEEE 802.11b之新型混波器,其主要的優點是高增益、低功率消耗,並且還擁有不錯的線性度、雜訊指數以及隔離度。模擬結果達到:14.99dB的轉換增益,0 dBm的三階截止點,7.19 dB的雙邊帶雜訊指數,RF-IF、LO-RF、LO-IF隔離度分別為52 dB、92 dB、98 dB,在供應電壓為1.5 V時,整體功率消耗為1.94 mW。
應用於UWB系統之新型混波器,模擬結果達到:13.1~14.3 dB的轉換增益,-5~-4 dBm的三階截止點,10.5~ 11.5 dB的雙邊帶雜訊指數,RF-IF、LO-RF、LO-IF隔離度分別為36~48dB、70~99dB、70~79dB,在供應電壓為1V時,整體功率消耗為3.3mW。

The paper presents a novel topology of mixer. The architecture used is based on Gilbert cell mixer, the combination of MOS transistors and BJT transistor device characteristics. In the proposed topology, the LO series-parallel switch will be applied to reduce supply voltage and dc power consumption for IEEE 802.11a, IEEE 802.11b WLAN and UWB system. By using the TSMC 0.35-μm SiGe BiCMOS process technology and TSMC 0.18-μm SiGe BiCMOS process technology design, the mixer under a variety of features has a good performance.
The paper proposes a mixer for IEEE802.11a WLAN application. The main advantages for mixer are low-noise, a moderate linearity, conversion gain, and isolation. The simulation results achieved are as follows: 14.1 dB power conversion gain, 0 dBm input third-order intercept point (IIP3), 6.93 dB double side band (DSB)noise figure, LO-RF, LO-IF and RF-IF isolation achieved up to 56 dB, 70 dB and 92 dB, respectively. The total dc power consumption of this mixer including output buffers is 2.31mW.
The paper proposes a mixer for IEEE802.11b WLAN application. The main advantages for mixer are high-gain and, a moderate linearity, noise and isolation. The simulation results achieved are as follows: 14.99 dB power conversion gain, 0 dBm input third-order intercept point (IIP3), 7.19 dB double side band (DSB)noise figure, LO-RF, LO-IF and RF-IF isolation achieved up to 52 dB, 91 dB and 98 dB, respectively. The total dc power consumption of this mixer including output buffers is 1.94mW.
The paper proposes a mixer for UWB system application. The simulation results achieved are as follows: 13.1~14.3 dB power conversion gain, -5~-4 dBm input third- order intercept point (IIP3), 10.5~ 11.5 dB double side band (DSB)noise figure, LO-RF, LO-IF and RF-IF isolation achieved up to 36~48 dB,70~99 dB and 70~79dB, respectively. The total dc power consumption of this mixer including output buffers is 3.3mW.
摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 vii
表目錄 xi
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 4
1.3 論文架構 5
第二章 混波器簡介 6
2.1 混波器重要特性參數 7
2.1.1 轉換增益(Conversion Gain) 8
2.1.2 線性度(Linearity) 8
2.1.3 隔離度(Isolation) 12
2.1.4 雜訊指數(Noise Figure) 13
2.1.5 功率消耗(Power consumption) 15
2.2 混波器種類 16
2.2.1 被動式混波器 16
2.2.2 動式混波器 17
第三章 雙平衡吉伯爾串並聯開關轉導混頻器 24
3.1 Gilbert cell混波器 24
3.2 雙平衡吉伯爾串並聯開關轉導混頻器核心電路 27
3.3 轉換增益 28
3.4 線性度 30
3.5 雜訊 31
3.6 共模反饋(CMFB)電路及緩衝(BUFFER)電路 32
第四章 模擬結果 33
4.1 IEEE 802.11a之低功率、低雜訊混波器模擬 33
4.2 IEEE 802.11b之高增益、低功率混波器模擬 44
4.3 UWB系統之混波器模擬 55
第五章 結論與未來展望 70
參考文獻 71
[1] 張盛富,張嘉展,無線通訊射頻晶片模組設計-射頻系統篇(修訂版),全華圖書,民國九十八年。
[2] IEEE Std 802.11a/D7.0, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-speed Physical Layer in the 5 GHz Band, 1999.
[3] IEEE Std 802.11b, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-speed Physical Layer Extension in the 2.4 GHz Band, 1999.
[4] M. Z. Win and R.A. Scholts, “Ultra-Wide Bandwidth Time-Hopping Spread-Spectrum Impulse Radio for Wireless Multiple-Access Communications,” IEEE Trans. on Comm., vol. 48, no. 4, pp. 679–689, August 2000.
[5] Qinghua Li, and L. A. Rusch, “Multiuser receivers for DS-CDMA UWB,” IEEE Ultar-Wideband Systems and Technologies, pp. 163–167, August 2002.
[6] 王鴻耀,「UWB低電壓低雜訊放大器及摺疊式與次諧波式混頻器之研究設計」,國立成功大學電腦與通信工程研究所碩士論文,民國九十七年六月。
[7] D. eenaerts, J. V. D. Tang, and C. Vaucher, Circuit Design for RF Transceivers, Kluwer Academic Publishers, 2001.
[8] 林志遠,「應用於射頻收發機之濾波器及混頻器研究與設計」,樹德科技大學電腦與通訊系碩士論文,民國九十七年六月。
[9] B. Razavi, RF Microelectronics, Prentice Hall, Upper Saddle River, 1998.
[10] D. M. Pozar, Microwave and RF Design of Wireless System, John Wiley & Sons, 2001.
[11] 魏宏哲,「高線性度降頻混頻器設計」,國立東華大學電機工程研究所碩士論文,民國九十二年七月。
[12] 施銘憲,「5.8GHz RFID之射頻前端接收器設計」,南台科技大學電子工程研究所碩士論文,民國九十五年七月。
[13] 吳澤宏,「5GHz 射頻吉伯特混頻器之設計與實作」,國立交通大學電信工程學系碩士論文,民國九十四年七月。
[14] 陳靜怡,「運用於超寬頻之四相位壓空振盪器及混波器電路設計」,國立中正大學電機工程研究所碩士論文,民國九十六年七月。
[15] Lee, S. G., and Choi, J. K., “Current-reuse bleeding mixer,” IEE Electronics Letters, vol. 36, no. 8, pp. 696–697, April 2000.
[16] Yang, T. Y., Tu, H. L., and Chiou, H. K., “Low-voltage high Linear and isolation transformer based mixer for direct conversion receiver,” In Proceedings of IEEE International Symposium Circuits and Systems (ISCAS), pp. 21–24, September 2006.
[17] Sullivan, P. J., Xavier, B. A., and Ku, W. H., “Low voltage performance of a microwave CMOS Gilbert cell mixer,” IEEE Journal of Solid-State Circuits, vol. 32, no. 7, pp. 1151–1155. July 1997.
[18] Sullivan, P. J., Xavier, B. A., and Ku, W. H., “A common source input cross coupled quad CMOS Mixer,” Journal of Analog Integrated Circuits and Signal Processing, vol. 19, no. 2, pp. 181–188, 1999. (Springer science)
[19] Rudell, J. C., et al., “A 1.9-GHz wide-band IF double conversion CMOS receiver for cordless telephone applications,” IEEE Journal of Solid-State Circuits, vol. 32, no. 12, pp. 2071–2088, December 1997.
[20] Feng, C. H., Jonsson, F., Ismail, M., and Olsson, H., “Analysis of nonlinearities in RF CMOS amplifiers,” The 6th IEEE International Conference on Electronics, Circuits and Systems, vol. 1, pp. 137–140, September 1999.
[21] Zhang, L. J., Li, W., and Yuan, J. S., “CMOS RF mixer nolinearity design,” Proceedings of the 44th IEEE Midwest Symposium on Circuits and Systems, vol. 2, pp. 808–811, August 2001.
[22] T.W. Kim, B. Kim, and K. Lee, “Highly linear receiver front-end adopting MOSFET transconductance linearization by multiple gated transistors,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 223–229. January 2004.
[23] Darabi, H., and Abidi, A. A. “Noise in RF-CMOS mixer: A simple physical model,” IEEE Journal of Solid-State Circuits, vol. 35, no. 1, pp. 15–25, January 2000.
[24] E. A. M. Klumperink, S. M., G. J. M. Wienk, and B. Nauta, “A CMOS switched transconductor Mixer,” IEEE J. Solid-State Circuits, vol. 39, no. 8, pp. 1231–1240, Aug. 2004.
[25] Meng, C. C., Xu, S. K., Wu, T. H., Chao, M. H., and Huang, G. W., “A high isolation CMFB down conversion micro mixer using 0.18-μm deep n-well CMOS technology,” Proceedings of the IEEE Radio Frequency Integrated Circuits (RFIC), pp. 619–622, June 2003.
[26] Chen, J. D., Lin, Z. M., and Row J. S. “A 5.25-GHz low-power down-conversion mixer in 0.18-μm CMOS technology,” Journal of Analog Integrated Circuits and Signal Processing, vol. 62, no. 3, pp. 301–312, March 2010.
[27] Hsu, H. M., and Lee, T. H., “High LO-RF isolation of zero-IF mixer in 0.18-μm CMOS technology,” Journal of Analog Integrated Circuits and Signal Processing, vol. 49, no. 1, pp. 19–25, October 2006, (Springer Science).
[28] Park, J., Lee, C. H., Kim, B. S., and Laskar, J., “Design and analysis of low flicker-noise CMOS mixers for direct-conversion receivers,” IEEE Transactions on Microwave Theory and Technology, vol. 54, no. 12, pp. 4372–4380, December 2006.
[29] Lee, S. Y., Huang, M. F., and Kuo, C. J., “A 5.25-GHz CMOS folded-cascode even-harmonic mixer for low-voltage applications,” IEEE Transactions on Microwave Theory and Technology, vol. 54, no. 2, pp. 660–669, February 2006.
[30] Syu, J. S., and Meng Chinchun, “5.7 GHz Gilbert I/Q Downconverter Integrated With a Passive LO Quadrature Generator and an RF March and Balun,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 2, pp. 660–669, February 2008.
[31] V. Vidojkovic, J.V.D. Tang, A. Leeuwenburgh, and A.V. Roermund, “A low-voltage folded-switching mixer in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 6, pp. 1259–1264, June 2005.
[32] H. Darabi and J. Chiu, “A noise cancellation technique in active RF-CMOS mixers,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2628–2632, December 2005.
[33] C. Hermann and M. Tiebout, “A 0.6V 1.6mW transformer based 2.5 GHz down-conversion mixer with 5.4 dB gain and -2.8 dBm IIP3 in 0.13-μm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp. 488–495, February 2005.
[34] Jehyung Yoon, Huijung Kim, Changjoon Park, Jinho Yang,Hyejeong Song, Sekyeong Lee, and Bumman Kim, “A New RF CMOS Gilbert Mixer With Improved Noise Figure and Linearity,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 3, March 2008.
[35] J. D. Chen, Z. M. Lin, and J. S. Row, “A 2-GHz Low-Power Down-Conversion Mixer in 0.18-μmCMOS Technology,” IEICE Trans. Electron., vol. E91–C, no. 1 January 2008.
[36] Kung-Hao Liang, Hong-Yeh Chang, and Yi-Jen Chan, “A 0.5–7.5 GHz Ultra Low-Voltage Low-Power Mixer Using Bulk-Injection Method by 0.18-m CMOS Technology,” IEEE Microwave and Wireless Components Letters, vol. 17, no. 7, pp. 531–533, July 2007.
[37] Jeong-Bae Seo, Jong-Ha Kim, Hyuk Sun, and Tae-Yeoul Yun, “A Low-Power and High-Gain Mixer for UWB Systems,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 12, pp. 803–805, December 2008.
[38] Chung-Ru Wu, Hsieh-Hung Hsieh, and Liang-Hung Lu, “An Ultra-Wideband Distributed Active Mixer MMIC in 0.18-m CMOS Technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 4, pp. 625–632, April 2007.
[39] Jun-Da Chen, “A low-voltage high-linearity ultra-wideband down-conversion mixer in 0.18-mm CMOS technology,” Microelectronics Journal, vol. 42 no. 1 pp. 113–126, January 2011.
[40] Hsiao,C. C., Tao, W., and Shey S. L., ”A 5-6 GHz 1-V CMOS Direct-Conversion ReceiverWith an Integrated Quadrature Coupler,” IEEE Journal of Solid-State Circuits, vol. 42, no. 9, pp. 1963-1975, September 2007.
[41] H. C. Chen, T.Wang, and S. S. Lu, “A5-6 GHz 1-V CMOS direct-conversion receiver with an integrated quadrature coupler,” IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1963–1975, September 2007.
[42] Syu J.S., Meng C.C., and Yen Y.C., ”5.7 GHz Gilbert I/Q Downconverter Integrated With a Passive LO Quadrature Generator and an RF Marchand Balun,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 2, pp. 127–129, February 2008.
[43] Georgios V., Yannis P., and Gerasimos T., ”A 1-V 5-GHz CMOS Multiple Magnetic Feedback Receiver Front-End,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 6, pp. 1338-1348, January 2008.
[44] Fotis C. , A. Papalambrou,, and G. Kalivas, ”A 5-GHz Subharmonic Injection-Locked Oscillator and Self-Oscillating Mixer,” IEEE Transactions on Circuits and Systems, vol. 55, no. 7, pp. 633 - 637, January 2008.
[45] Jing-Hong Conan Zhan, Brent R. Carlton, and Stewart S. Taylor, ”A Broadband Low-Cost Direct-Conversion Receiver Front-End in 90 nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 43, no. 5, pp. 1132-1137, May 2008.
[46] Mohammad Bagher Vahidfar, and Omid Shoaei, ”A High IIP2 Mixer Enhanced by a New Calibration Technique for Zero-IF Receivers,” IEEE Transactions on Circuits and Systems, vol. 55, no. 3, pp. 219-223, March 2008.
[47] Jehyung Yoon, Huijung Kim, Changjoon Park, Jinho Yang, Hyejeong Song, Sekyeong Lee, and Bumman Kim, ”A New RF CMOS Gilbert Mixer With Improved Noise Figure and Linearity,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 3, pp. 626-631, March 2008.
[48] Chih-Hao Chen, Pei-Yuan Chiang, and Christina. F. Jou, ”A Low Voltage Mixer With Improved Noise Figure,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 2, pp. 92-94, February 2009.
[49] Sven K. H., Oliver S., Marc T., and Ilona R., ”Inductorless Low-Voltage and Low-Power Wide band Mixer for Multistandard Receivers,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 5, pp. 1384-1390, May 2010.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔