跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/09 19:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:沈家旭
研究生(外文):Chia-Hsu Shen
論文名稱:增韌型改質聚乳酸材料之研究
論文名稱(外文):The study of ductile PLA materials
指導教授:陳伯寬
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:80
中文關鍵詞:聚乳酸增韌2-甲基丙烯醯氧乙基異氰酸酯三甲基己二異氰酸酯
外文關鍵詞:Polylactide acidductile2-Methacryloyloxyethyl isocyanateTrimethyl-hexamethylene diisocyanate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:669
  • 評分評分:
  • 下載下載:73
  • 收藏至我的研究室書目清單書目收藏:1
聚乳酸(Polylactic acid)是由百分之百可再生資源如玉米、小麥、甜菜和馬鈴薯等原料所製成,具有無毒、高強度、生物相容與可生物
分解的特性,符合環保訴求,近年來頗被重視。但由於聚乳酸(PLA)本身的物性與機械性質等較差,因此在許多應用受到限制,特別是作為生醫材料。所以本論文著重於增韌性改質聚乳酸的研究,來提升聚乳酸的耐衝擊強度與斷裂伸長率等特性。
故本研究將利用少量的2-Methacryloyloxyethyl isocyanate (MOI)以及Trimethyl-hexamethylene diisocyanate (TMDI)對聚乳酸(PLA)進行增韌改質,並探討耐熱性質及機械性能。實驗結果顯示,聚乳酸與MOI或TMDI共聚改質後皆能增加其韌性,斷裂伸長率與純聚乳酸相較之下整整提升約25倍,最佳可達到52 %,耐衝擊強度也有顯著的提升,從原本的46.3 J/m提升至74.1 J/m,改質後之聚乳酸薄膜以FT-IR、NMR分析其化學結構式,證實所提出的化學反應方程式是正確的,且於分解性分析中得知,改質過後之聚乳酸不僅柔韌性提升,而且有助於聚乳酸更快分解。
改質後聚乳酸的熔融指數(MI)超過100,成功製備出增韌型聚乳酸材料,能應用於生技、紡織等產業界。

Polylactide (PLA) is biodegradable and has been useful in various biomedical applications. Since the majority of the biodegradable polymers in clinical use are rather stiff materials exhibiting limited extendibility with low elongation at break values, they are unsuitable for use in numerous applications. The physical and mechanical properties of PLA must be improved to allow for more biomedical applications. In order to improve the flexibility and strength of biodegradable PLA, various reaction conditions were studied. Urethane structure polymer materials were prepared; PLA was reacted with a small amount of methacryloyloxyethyl isocyanate (MOI) and/or trimethyl hexamethylene diisocyanate (TMDI) to obtain ductile PLA with markedly improved mechanical properties. Elongation at break can be increased by ~25 times when compared to neat PLA. Impact resistance (notched) improved 1.6 times. Thus, the modified PLA biodegradable polymers may have greater application as a biomedical material with increased mechanical properties.

中文摘要 I
ABSTRACT II
謝誌 III
目錄 IV
圖目錄 VIII
表目錄 X
第一章 緒論 1
1-1 前言 1
1-2 生物可分解性高分子 5
1-2-1 高分子分解機制 5
1-2-2 生物可分解高分子種類 6
1-3 聚乳酸(Polylactic acid, PLA) 8
1-3-1 聚乳酸簡介 8
1-3-2 聚乳酸之合成 11
1-3-3 聚乳酸之分解 12
1-3-4 聚乳酸之應用 14
1-4 聚乳酸增韌改質之相關研究 15
1-5 研究動機與目的 18
第二章 實驗藥品與檢測方法 19
2-1 藥品 19
2-2 檢測樣品製備 19
2-2-1 拉伸試驗試片及FTIR檢測薄膜之製備 19
2-2-2 耐衝擊試驗及熱變形溫度試驗試片製備 20
2-3 檢測儀器原理及方法 20
2-3-1 傅立葉轉換紅外線光譜儀 (FTIR) 20
2-3-2 核磁共振儀 (1H-NMR、13C-NMR、HMBC) 20
2-3-3 凝膠色層分析儀 (GPC) 21
2-3-4 熱重量分析儀 (TGA) 22
2-3-5 示差掃描熱分析儀 (DSC) 23
2-3-6 熔融指數儀 (MI) 24
2-3-7 熱變形溫度試驗 (HDT) 25
2-3-8 耐衝擊試驗 (Impact test) 25
2-3-9 拉伸試驗 (Tensile test) 28
2-3-10 掃描式電子顯微鏡 (SEM) 29
2-3-11 分解性測試 29
第三章 聚乳酸(PLA)與MOI改質聚合物對其結構與機械及熱性質探討 30
3-1 前言 30
3-2 Poly(ester-urethane)共聚物之製備 31
3-3 結果與討論 33
3-3-1 結構鑑定分析 33
3-3-1.1 FTIR 33
3-3-1.2 1H-NMR、13C-NMR、HMBC 36
3-3-2 凝膠滲透層析(GPC) 40
3-3-3 熱性質分析 41
3-3-3.1 熱重量分析儀(TGA)分析 41
3-3-3.2 示差掃描熱分析儀(DSC)分析 42
3-3-3.3 熔融指數(MI) 44
3-3-3.4 熱變形溫度(HDT) 45
3-3-4 機械性質分析 46
3-3-4.1 耐衝擊試驗(Impact test) 46
3-3-4.2 拉伸試驗(Tensile test) 47
3-3-5 掃描式電子顯微鏡(SEM) 49
3-3-6 分解性分析 51
3-4 結論 55
第四章 聚乳酸(PLA)與TMDI改質聚合物對其結構與機械及熱性質探討 57
4-1 前言 57
4-2 Poly(ester-urethane)共聚物之製備 58
4-3 結果與討論 59
4-3-1 結構鑑定分析 59
4-3-1.1 FTIR 60
4-3-2 凝膠滲透層析(GPC) 62
4-3-3 熱性質分析 63
4-3-3.1 熱重量分析儀(TGA)分析 63
4-3-3.2 示差掃描熱分析儀(DSC)分析 65
4-3-3.3 熔融指數(MI) 66
4-3-3.4 熱變形溫度(HDT) 68
4-3-4 機械性質分析 68
4-3-4.1 拉伸試驗(Tensile test) 68
4-3-4.2 耐衝擊試驗(Impact test) 71
4-4 結論 72
第五章 總結 74
參考文獻 76
附錄1 80


[1] L. L. Madison, G.W. Huisman, “Metabolic Engineering of Poly(3-Hydroxyalkanoates):From DNA to Plastic”, Microbiol. Mol. Biol. Rev, 63, 21-53 (1999).
[2] Y. Y. Huang, H. L. Chen, T. Hashimoto, “Face-Centered Cubic Lattice of Spherical Micelles in Block Copolymer/Homopolymer Blend”, Macromolecules, 36, 764-770 (2003).
[3] X. H. Zhang, Z. G. Wang, M. Muthukumar, C. C. Han,
“Fluctuation-Assisted Crystallization: In a Simultaneous Phase Separation and Crystallization Polyolefin Blend System”, Macromol.
Rapid Commun, 26, 1285-1288 (2005).
[4] D. Andrienko, S. Leon, L. Delle Site, K. Kremer, “Adhesion of Polycarbonate Blends on a Nickel Surface”, Macromolecules, 38, 5810-5816 (2005).
[5] N. Zhou, T. P. Lodge, F. S. Bates, “Influence of Conformational Asymmetry on the Phase Behavior of Ternary Homopolymer/Block Copolymer Blends around the Bicontinuous Microemulsion Channel”, Journal of Chemical Physics. B, 110, 3979-3989 (2006).
[6] R. M. Ho, C. C. Chang, T. M. Chung, Y. W. Chiang, J. Y. Wu, “Competition between microphase separation and crystallization
in self-assembly sPS/PS-PEP blends”, Polymer, 44, 1459-1467 (2003).
[7] J. Y. Hsu, B. Nandan, M. C. Chen, F. C. Chiu, H. L. Chen,
“Correlation between crystallization kinetics and melt phase behavior
of crystalline–amorphous block copolymer/homopolymer blends”, Polymer, 46, 11837-11843 (2005).
[8] A. H. He, C. C. Han, G. S. Yang, “Preparation and characterization of PLLA/P(CL-b-LLA) blends by an in situ ring-opening
polymerization”, Polymer, 45, 8231-8237 (2004).
[9] Y. J. Kim, H. Uyama, S. Kobayashi, “Regioselective Synthesis of Poly(phenylene) as a Complex with Poly(ethylene glycol) by
Template Polymerization of Phenol in Water”, Macromolecules, 36, 5058-5060 (2003).
[10] I. A.Van Casteren, R. A. M. Van Trier, J. G. P. Goossens, H. E. H.
Meijer, P. J. J. Lemstra, “The influence of hydrogen bonding on the preparation and mechanical properties of PS-diblock copolymer blends”, Polym. Sci. Part B Polym. Phy., 42, 2137-2160 (2004).
[11] S. Anantawaraskul, J. B. P. Soares, P. M. Wood-Adams, “Cocrystallization of Blends of Ethylene/1-Olefin Copolymers: An Investigation with Crystallization Analysis Fractionation (Crystaf)”, Macromol. Chem. Phys., 205, 771-777 (2004).
[12] R. M. Atlas, “Microbial Ecology: Fundamentals and Applications, 3rd ed.”, Springer-Verlag, New York, 39-43 (1993).
[13] V.C. Kalia, N. Raizada, V. Sonakya, “Bioplastics”, J. Sci. Ind.Res., 59, 433-445 (2000).
[14] S. S. Song, S. Hein, A. Steinbuchel, “Production of Poly(4-hydroxybutyric acid) by fed-batch cultures of recombinant strains of Escherichia coli.”, Biotechnol. Lett., 21, 193-197 (1999).
[15] 蘇明德, “能自動分解的塑膠-可降解塑膠”, 科學發展, 第448期, 第64-67頁 (2010).
[16] J. W. Sun, New Chemical Materials, 33, 5, 4-6 (2005).
[17] Y. Tokiwa, B. P. Calabia, “Biodegradability and biodegradation of poly(lactide)”, Appl Microbiol Biotechnol, 72, 244-251 (2006).
[18] M. Day, A. Victoria Nawaby, X. Liao, “A DSC study of the crystallization behaviour of polylactic acid and its nanocomposites”, J. Therm. Anal. Cal., 86, 623-629 (2006).
[19] M. Balkcom, B. Welt, and K. Berger, “Notes From the Packaging
Laboratory: Polylactic Acid - An Exciting New Packaging Material”,
Doc. ABE339, University of Florida, Gainesville FL (Dec. 2002).
[20] NatureworksTM, Cargill Dow LLC, P.O. Box 5830, MS114,
Minneapolis MN 55440.
[21] Mason Mariah N., “Predicting Controlled-Release Behavior of Degradable PLA-b-PEG-b-PLA Hydrogels”, Marcromolecules, 34, 4630-4635 (2001).
[22] C. C. Chu, “Degradation phenomena of two linear aliphatic polyester fibres used in medicine and surgery”, Polymer, 26, 591-594 (1985).
[23] J. R. Randall, C. M. Ryan, “Impact modified melt-stable lactide polymer compositions and processes for manufacture thereof”, Cargill, US Patent 6495631, (Dec. 17 2002).
[24] E. B. Bond, J. M. Autran, “Fibers comprising starch and
biodegradable polymers”, Cargill, US Patent 6946506, (Dec 12
2002).
[25] D. Cohn, T. Stern, M. F. Gonzalez, J. Epstein, “Biodegradable poly(ethylene oxide)/poly(ε-caprolactone) multiblock copolymers”, J Biomed Mater Res, 59, 273-281 (2002).
[26] X. Y. Xiong, K. C. Tam, L. H. Gan, “Synthesis and thermal
responsive properties of P(LA-b-EO-b-PO-b-EO-b-LA) block
copolymers with short hydrophobic poly(lactic acid) (PLA)
segments”, Polymer, 46, 1841-1850 (2005).
[27] D. Cohn, A. Hotovely-Salomon, “Biodegradable multiblock
PEO/PLA thermoplastic elastomers: molecular design and
properties”, Polymer, 46, 2068-2075 (2005).
[28] B. H. Li, M.C. Yang, “Improvement of thermal and mechanical properties of poly(L-lactic acid) with 4,4-methylene diphenyl diisocyanate”, Polym for Adv Tech, 17, 439-443 (2006).
[29] X. Deng, Z. Zhu, C. Xiong, L. Zhang, “Synthesis and
characterization of biodegradable block copolymers of
ε-caprolactone and D,L-lactide initiated by potassium poly(ethylene glycol)ate”, J Polym Sci, Part A Polym
Chem, 35, 703-708 (1997).
[30] C. H. Ho, C. H. Wang, C. I. Lin, Y. D. Lee, “Synthesis and characterization of TPO–PLA copolymer and its behavior as
compatibilizer for PLA/TPO blends”, Polymer, 49, 3902-3910
(2008).
[31] J. S. Choi, W. H. Park, “Effect of biodegradable plasticizers on thermal and mechanical properties of poly(3-hydroxybutyrate)”,
Polymer testing, 23, 455-460 (2004).
[32] S. McCarthy, X. Song, “Biodegradable Plasticizers for Polylactic Acid”, J Appl Med Polym J Appl Med Polym, 6:Part 2, 64-69 (2002).
[33] O. Martin, L. Averous, “Poly(lactic acid): plasticization and properties of biodegradable multiphase systems”, Polymer, 42, 6209-6219 (2001).
[34] N. Ljungberg, B. Wesslen, “Tributyl citrate oligomers as plasticizers for poly(lactic acid): thermo-mechanical film properties and aging”, Polymer, 44, 7679-7688 (2003).
[35] T. Ouchi, S. Ichimura, Y. Ohya, “Synthesis of branched
poly(lactide) using polyglycidol and thermal, mechanical properties
of its solution-cast film”, Polymer, 47, 429-434 (2006).
[36] H. T. Oyama, “Super-tough poly(lactid acid) materials: Reactive blending with ethylene copolymer”, Polymer, 50, 747-751 (2009).
[37] C. W. Patrick, L.V. McIntire, “Shear Stress and Cyclic Strain Modulation of Gene Expression in Vascular Endothelial Cells”, Blood Purif., 13, 112-124 (1995).
[38] S. Matsuhiro, Konbatekku, 5, 8 (1997).
[39] Z. Dong, Y. Li, Q. Zou, “Degradation and biocompatibility of porous nano-hydroxyapatite/polyurethane composite scaffold for bone tissue engineering”, J. Applied Surface Science, 255, 6087
-6091 (2009).
[40] E. W. Fischer, Hans J. Sterzel and G. Wegner, “Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions”, Polym, 251, 980-990 (1973).
[41] T. Nakamura, S. Hitomi, S. Watanabe, Y. Shimizu, K. Jamshidi,
S. H. Hyon, Y. Ikada, “Bioabsorption of polylactides with different
molecular properties”, Joumal of Biomedical Materials Research,
23, 1115-1130 (1989).
[42] B. K. Chen, C. H. Shen, S. C. Chen, Antonia F. Chen, “Ductile PLA modified with methacryloyloxyalkyl isocyanate improves mechanical properties”, Polymer, 51, 4667-4672 (2010).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top