跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.88) 您好!臺灣時間:2024/12/04 14:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳明宏
研究生(外文):Ming-Hong,Chen
論文名稱:微波氫/氮電漿退火改善直線式連續濺鍍氧化鋅摻雜鋁薄膜之特性
論文名稱(外文):Microwave Hydrogen/Nitrogen Plasma Annealing to Improve the Electrical and Optical Properties of In-line Sputtered Aluminum doped Zinc Oxide Films
指導教授:張慎周
指導教授(外文):Shang-Chou,Chang
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:59
中文關鍵詞:氧化鋅氫氣氮氣微波電漿
外文關鍵詞:Aluminum doped Zinc Oxide FilmsHydrogenNitrogenMicrowave Plasma
相關次數:
  • 被引用被引用:0
  • 點閱點閱:337
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
試著以微波氫氮電漿(Microwave Hydrogen/Nitrogen Plasma)對氧化鋅摻雜鋁(AZO)的透明導電膜,做製程後處理,期望藉由微波氫氮電漿來增加氧化鋅摻雜鋁薄膜的電性與光特性能力。
本研究的實驗片是使用直線式連續濺鍍機台來濺鍍沉積氧化鋅摻雜鋁的透明導電膜,試片氧化鋅摻雜鋁薄膜的膜厚在500nm,製程基極溫度250度。
在後製程實驗中將微波氫氮電漿的功率固定在300W,氣體總壓力固定在25 Torr,製程時間10分鐘,但其中改變氣體H2與N2的比例,固定H2的流量在100sccm但N2則改變為25sccm,50sccm,100sccm,以達到腔體內氫氣與氮氣的不同比例,並藉由實驗數據以得知在腔體內最佳的氫氣與氮氣比例。完成微波氫氮電漿後的氧化鋅摻雜鋁薄膜,以霍爾量測得到它的電阻率、載子濃度、移動率,由數據得知電阻率因氮氣的增加而往下下降到8.1× 10-4 ohm cm,7.7× 10-4 ohm cm與5.3× 10-4 ohm cm,均優於未處理的氧化鋅摻雜鋁薄膜的1.1× 10-3 ohm cm與純氫氣微波氫電漿處理的8.8×10-4 ohm cm 與純氮氣處理的1.2× 106 ohm cm。
在光譜儀量測出來的光穿透率數據中,也可看出波長在可見光範圍400nm~700nm中,氫氮氣體比例在100比25有較佳的光穿透,為95.6%,優於純氫氣的微波氫電漿93%。
藉由SEM拍攝出來的照片也可觀察到因不同的氫氣與氮氣氣體比例,造成氧化鋅摻雜鋁薄膜不同的表面形貌。
由以上的實驗結果可以證實,在微波氫電漿中加入一定的氮氣比例可以得到更好的電性與光特性,若以光電指標為依據,則以氫氣與氮氣在25 Torr,比例在1比1是46× 10-3Ω-1為最好。
藉由本研究結果可以做為太陽能電池或平面顯示器工業所使用連續式濺鍍機台製作氧化鋅摻雜鋁薄膜,經微波氫電漿後製處理改善氧化鋅的電性與光特性依據。


This work applies microwave hydrogen/nitrogen plasma annealing on in-line sputtered aluminum doped zinc oxide (AZO) films. The electrical and optical properties of post-treated AZO films were measured to check whether the plasma annealing can improve the electrical an optical properties of AZO films or not
The AZO films were prepared with one in-line sputtering tool with 250 0C substrate temperature. The films thickness is 500 nm.
After that, the AZO films were treated with different proportional hydrogen/nitrogen gas flow in microwave plasma annealing. The process gas flow in microwave system was changed with hydrogen/nitrogen: 100/0, 100/25, 100/50, 100/100 and 0/100 respectively. Other recipes in microwave system were microwave power, process pressure and process time, constantly kept at 300 W, 25 torr and 10 minutes respectively. The electrical properties: carrier concentration, mobility and electrical resistivity of AZO films were measured by Hall measurement. The results indicate the electrical resistivity of AZO films post-treated with hydrogen and nitrogen mixed plasma annealing is lower than that with pure hydrogen plasma annealing. The higher proportion the nitrogen gas flow is, the lower electrical resistivity the AZO films demonstrate. But pure nitrogen plasma annealing on AZO films shows negative effect, completely different with pure hydrogen or hydrogen and nitrogen mixed plasma annealing.
The average optical transmittance between 400~700 nm region of AZO films with hydrogen and nitrogen mixed plasma annealing is also a little higher than that with pure hydrogen plasma annealing. Different surface morphology was observed from AZO films treated with pure hydrogen, mixed hydrogen with nitrogen and pure nitrogen plasma annealing.
The combined results suggest better electrical and optical properties of AZO films can be obtained by treating AZO films with hydrogen and nitrogen mixed plasma annealing those treated with pure hydrogen annealing. The best figure of merit is 46× 10-3Ω-1 obtained from hydrogen/nitrogen = 100/100 plasma annealing.
This work contributes to solar cells or flat panel display industries if AZO films were considered to be used as transparent electrodes.

中文摘要----------------i
英文摘要------------iii
致謝------------v
總目錄-----------1
圖目錄---------3
表目錄-----------------4
第一章 緒論--------------5
1.1 前言-------------------5
1.2 研究動機--------------8
1.3 相關文獻回顧------------10
第二章 相關原理----------12
2.1 透明導電膜發展歷史-------12
2.2透明導電膜--------------13
2.3透明金屬氧化物介紹----------14
2.4 氧化鋅薄膜之晶體結構-----------------15
2.5 電漿-------------------16
2.6 濺鍍原理 -------------17
2.7 薄膜沉積--------------18
2.8 薄膜表面型態結構------------21
2.9 量測儀器與分析--------------23
2.9.1 X-ray 繞射分析-------------23
2.9.2 膜厚分析儀器-----------24
2.9.3 掃描式電子顯微鏡分析---------25
2.9.4 光譜分析----------------25
2.9.5 霍爾電性分析---------------26
第三章 實驗方法與步驟------------28
3.1製程材料--------------------28
3.2基板清洗---------------------28
3.3濺鍍AZO薄膜-------------------29
3.3.1連續式濺鍍--------------29
3.4後製程微波氫氮電漿處理--------32
3.4.1 腔體純氫氣微波電漿實驗步驟-------33
3.4.2 腔體純氮氣微波電漿實驗步驟------34
3.4.3 腔體氫氣與氮氣含量4比1(100/25)微波氫氮電漿實驗步驟--35
3.4.4 腔體氫氣與氮氣含量2比1(100/50)微波氫氮電漿實驗步驟--36
3.4.5 腔體氫氣與氮氣含量1比1 (100/100)微波氫氮電漿實驗步驟37
3.5實驗流程--------38
第四章 結果與討論-------------39
4.1氧化鋅摻雜鋁薄膜在微波氫氮電漿後製程之後的霍爾數據結果與討論----------39
4.2氧化鋅摻雜鋁薄膜在微波氫氮電漿後製程之後的光學性值結果與討------------42
4.3氧化鋅摻雜鋁薄膜在微波氫氮電漿後製程之後的XRD實驗結果與討論--------45
4.4 氧化鋅摻雜鋁薄膜在微波氫氮電漿後製程之後的SEM表面形態結果與討論-------48
4.5氧化鋅摻雜鋁薄膜在微波氫氮電漿後製程之後的光電性質綜合比較-------53
第五章 結論----------55
參考文獻---------57

[1].H. Sheng,1 N.W. Emanetoglu,1 S. Muthukumar,2 B.V. Yakshinskiy,3 S. Feng,1 and Y.Lu1, J.Electron Mater, Vol.32, p.9, April 1 2003.
[2].Han-Ki Kim, Sang-Heon Han, and Tae-Yeon Seong, Appl.Phys.Lett. Vol.77,p.11 , 11 September 2000.
[3] X. Jiang, F. L. Wong, M. K. Fung, and S.T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices”,Appl.Phys.Lett. 83(2003)1875.
[4].Y.G. Wanga, S.P. Laua,, X.H. Zhangb, H.H. Hngc, H.W. Leea, S.F. Yua, B.K. Taya , Journal of Crystal Growth ,Vol.259 ,p.335–342 , 31 July 2003.
[5].Y.R. Ryu, S. Zhu,1, D.C. Look, J.M. Wrobel, H.M. Jeong, H.W. White , Journal of Crystal Growth, Vol.216 , p.330-334 ,21 March 2000.
[6]X. Jiang, F. L. Wong, M. K. Fung, and S.T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices”,Appl.Phys.Lett. 83(2003)1875.
[7] L. Raniero, I. Ferreira, A. Pimentel, A.Goncalves, P. Canhola, E. Fortunato and R. Martins,“Role of hydrogen plasma on electrical and optical properties of ZGO, ITO and IZO transparent and conductive coatings”,Thin Solid Films 511-512 (2006) 295-298.
[8] G. J. Exarhos, S. K. Sharma,“Influence of processing variables on the structure and properties of ZnO films”,Thin Solid Films 270 (1995) 27-32.
[9] K. C. Hsiao, S. C. Liao and Y. J. Chen, “Synthesis, characterization and
photocatalytic property of nanostructured Al-doped ZnO powders prepared
by spray pyrolysis” ,Material Science and Engineering A,447(2007) 71-76.
[10] J. Hu and R. G. Gordon, “Textured aluminum-doped zinc oxide thin films
from atmospheric pressure chemical-vapor deposition” , J.Appl. Phys.
71(1992) 880.
[11] D. R. Sahu, Shin-Yuan and Jow-Lay Huang,“Improved properties of
Al-doped ZnO film by electron beam evaporation technique”
Microelectronic Journal, 38(2007)245-250.
[12] R. B. H. Tahar,“Structural and electrical properties of aluminum-doped
zinc oxide films prepared by sol–gel process”,Journal of the European
Ceramic Society, 25(2005)3301-3306.
[13] R. K. Shukla, Anchal Srivastava, Atul Srivastava and K. C. Dubey,
“Growth of transparent conducting nanocrystalline Al doped ZnO thin
films by pulsed laser deposition”,Journal of Crystal Growth,
294(2006)427-431.
[14] Hyungduk Ko, Weon-Pil Tai, Ki-Chul Kim, Sang-Hyeob Kim, Su-Jeong
Suh,Young-Sung Kim, “Growth of Al-doped ZnO thin films by pulsed DC
magnetron sputtering”,Journal of Crystal Growth, 277(2005)352-358.
[15] Byeong-Yun Oh, Min-Chang Jeong, Woong Lee and Jae-Min Myoung,
“Properties of transparent conductive ZnO:Al films prepared by
co-sputtering”, Journal of Crystal Growth, 274(2005)453-457.
[16] Byeong-Yun Oh,”Stabilization in electrical characteristics of
hydrogen-annealed ZnO:Al films”,Applied Surface Science ,
253(2007),7157-7161.
[17] Shang-Chou Chang, “Low-pressure H2/N2 annealing on indium tin
oxide film”, Microelectronics Journal ,38 (2007) 1220–1225.
[18] W.F Liu,”Effects of hydrogen flux on the properties of Al-doped ZnO
films sputtered in Ar+H2 ambient at low temperature”,Aplied Surface
Science,253(2007)2999-3003.
[19] Roy G. Gordon,”Criteria for Choosing Transparent Conductors”,MRS
bulletin (2000)52-57.
[20] 張存續,“材料與微波之頻率響應與反應特性”,工業材料雜誌,216期(2004)81-87.
[21] Yuri M. Strzhemechny, Howard L. Mosbacker, David C. Look and Donald C. Reynolds et. al,“Remote hydrogen plasma doping of single crystal ZnO”,Applied Physics Letters, 84(2004)2545-2547.
[22] Tao Wang,Y.B. Dai, and Hi-Deok Lee,“Fabrication of TiSi2 Using
Microwave Hydrogen Plasma Annealing”, Vol 14(2005) 516-518.
[23] T. Minami,“Transparent conducting oxide semiconductors for transparent
electrodes”,Semiconductor Science and Technology, 20 S35-S44 (2005) .
[24] K. L. Chopra, S. Magor, and D. K. Pandya, Thin Solid Films, 102, 1 (1983).
[25] H. L. Hartnagel, A. L. Dawar, A. K. Jain, and C. Jagadish, SemiconductingTransparent Thin Films, Institute of Physics Publishing (1995).
[26] C. Lee, K. Lim, and J. Song, Sol. Energy Mater. Sol. Cells, 43, 37
(1996).
[27] C.H.YI,Itaru and Y. Shigesato,“Microstructure of Low-Resistivity
Tin-Doped Indium Oxide Films Deposited at 150∼200°C”,
Jpn.J.Appl.Phys, Vol 34(1995)L244-L277.
[28] K. Akimoto *, S. Ishizuka, M. Yanagita, Y. Nawa, Goutam K. Paul, T.
Sakurai,“Thin film deposition of Cu2O and application for solar
cells”,Solar Energy,80(2006)715–722.
[29] 楊錦章, "基礎濺鍍電漿",電子發展月刊,68 期(72),13-40.
[30] J.A.Thornton, "Influence of Apparatus Geometry and Deposition
Condition on the Structure and Topography of Thick Sputtered
Coating", J.Vac.Sci.Technol.11(1974)666-670.
[31] J.A.Thornton, "Influence of Substrate Temperature and Deposition
Rate on Structure of Thick Sputtered Cu Coatings", J.Vac.Sci.
Technol.,12(1975),830-835.
[32] Bull. Mater. Sci., “Grain size dependent optical band gap of CdI2 films”Vol. 24, No. 3, June 2001, pp. 297–300. © Indian Academy of Sciences.
[33] S. T. Tan, B. J. Chen, X. W. Sun,a_ and W. J. Fan“ Blueshift of
optical band gap in ZnO thin films grown by metal-organic”_Received
18 August 2004; accepted 29 April 2005; published online 1 July 2005
[34] 吳光榮 (Kuang-Jung Wu)直線式連續濺鍍製作氧化鋅共摻雜鎵鋁薄膜 Gallium and Aluminum Co-doped Zinc Oxide (GAZO) Films Prepared by in-line Sputter Tool Department of Electrical Engineering Kun Shan University Tainan, Taiwan, R.O.C. Thesis for Master of Science July 2010
[35] G. J. Fang et al. / Vacuum 68 (2003)
[36] 林佩穎 Study on plasma modification of polymer membranes by optical emission spectroscopy 中原大學 2006年7月10日
[37] C. G. Van de Walle, ”Hydrogen as a Cause of Doping in Zinc
OxidePhys”,Rev.Lett. 85 (2000) 1012-1015.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top