跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/07 18:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡孟峰
研究生(外文):Meng-Feng Tsai
論文名稱:貝殼表型與環境變化的適應力
論文名稱(外文):Phenotypic Patterns of Calcified Shells and Adaptive Capacity to Changing Environment
指導教授:陳恕行
指導教授(外文):Shu-Hsing Chen
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:48
中文關鍵詞:表型可塑性海水酸化生物鈣化毛細管網絡
外文關鍵詞:Phenotypic plasticityocean acidificationbiocalcificationcapillary network
相關次數:
  • 被引用被引用:0
  • 點閱點閱:832
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
表型可塑性提供生物快速且有效地反應環境變化的能力。二氧化碳排放造成的海洋酸化對鈣化生物的生存有很大威脅,多樣的貝類殼紋即是表型可塑性的表現,這與他們適應環境的能力有關,本研究要瞭解貝類外表殼紋和截面上生長紋路的關聯。貝殼的碳酸鈣儲存是動態的,溶解與再結晶都會發生,規律性的殼紋與再結晶是產生貝殼內毛細管網絡的關鍵,毛細管網絡能協助 pH 值的調節。不過,不具規律性殼紋的貝類對暴風雨的天氣顯現較高的忍受度。探討不同表型的適應能力有助於對抗海洋酸化的努力。


Phenotypic plasticity which results in variation of observable traits provides adaptive potential for organisms to changing environment.Carbon dioxide emission and industrial pollution have raised concerns about how calcifying organisms respond to acidifying environment. This investigation is to study appearance-related physiology of shellfish with samples collected from a fishery. Biocalcification is involved in the pH balance mechanism which is greatly influenced by acidifying environment. A delicate capillary network inside the calcified shell facilitates the dissolution and storage of calcium carbonate. Coloration and pigmentation pattern on the shell affect the development of the capillary network. Shellfish with lighter shell colors normally exhibit higher tolerance to prolonged adversity. Environmental conditions can affect the growth rates of different phenotypes.



摘要 iv
英文摘要 v
誌謝 vi
目錄 vii
圖目錄 ix
表目錄 xii
第一章 前言 1
1-1 背景 1
1-2 文獻回顧 2
1-3 動機與目的 27
第二章 實驗方法 28
2-1樣品收集與表型觀察 28
2-2貝殼生長線觀察 28
2-3表型的生理關聯 30
第三章 結果 31
3-1表型的觀察 31
3-2貝殼生長線及殼緣結晶結構轉換 31
3-3表型生理關聯 38
第四章 討論 39
4-1殼的成長 39
4-2殼緣結晶結構轉換 42
4-3表型的關聯 43
第五章 結論 44
參考文獻 45
自述 48


[1] Colin Brownlee, Alison R Taylor, Algal Calcification and Silification, ENCYCLOPEDIA OF LIFE SCIENCES, (2002).
[2] T.A. McConnaughey, J.F. Whelan, Calcification generates protons for nutrient and bicarbonate uptake, Earth-Science Reviews 42 (1997), 95-117.
[3] Allegra M. Small, Walter H. Adey, Reef corals, zooxanthellae and free-living algae: a microcosm study that demonstrates synergy between calcification and primary production, Ecological Engineering 16 (2001), 443–457.
[4] Bambach, R.K.; Knoll, A.H. & Wang, S.C., Origination, extinction, and mass depletions of marine diversity, Paleobiology (2004) 30(4): 522–542, doi:10.1666/0094-8373(2004)030 <0522:OEAMDO>
[5] Raup, D. & Sepkoski, J. Mass extinctions in the marine fossil record, Science (1982), 215: 1501–1503. doi:10.1126/science.215.4539.1501. PMID 17788674.
[6] Scott C. Doney and et al. Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system. PNAS Early Edition September 3, 2007. www.pnas.org doi 10.1073 pnas.0702218104.
[7] Pamela Hallock, Global change and modern coral reefs: New opportunities to understand shallow-water carbonate depositional processes, Sedimentary Geology 175 (2005),19–33.
[8] Doney, Scott, The dangers of ocean acidification, Scientific American, March (2006), 58-65.
[9] http://www.ldeo.columbia.edu/~sanpisa/OceanSed%20project/carbonatech e m.htm
[10]http://211.22.206.188/page/62.%E6%9F%8F%E5%AE%8F/%E8%97%8D%E5%A4%A9%E5%AF%86%E7%A2%BC/page/all/3-2-1.html
[11] Aizenberg, J., Lambert, G., Weiner, S., and Addadi, L., Factors Involved in the Formation of Amorphous and Crystalline Calcium Carbonate: A Study of an Ascidian Skeleton, J. AM. CHEM. SOC. VOL. 124, NO. 1, 2002, 32-39.
[12] Antonio Gerardo Checa, The nature and formation of calcitic columnar prismatic shell layers in pteriomorphian bivalves, Biomaterials 26 (2005), 6404–6414.
[13] Hiroko KOIKE, Seasonal Dating by Growth-line Counting of the Clam, Meretrix Lusoria, Doctoral dissertation The University Museum, The University of Tokyo, (1980).
[14] Kleypas, JA et al. Geochemical Consequence of Increased Atmospheric Carbon Dioxide on Coral Reefs. Science (1999), 284-118.
[15] http://asp.iwpower.com/lee1836/index.html
[16] An-Chin Lee, The Effect of Temperature and Components of Artificial Seawater on Digging Ability of Hard Clam (Meretrix lusoria), J. Fish. Soc. Taiwan, 31(4): (2004), 251-262.
[17] Jack M. Whetstone, Biology and Culture of the Hard Clam, Southern Regional Aquaculture Center Publication, No. 433, (2005).
[18] Arnaud Muller-Feuga, The role of microalgae in aquaculture: situation and trends, Journal of Applied Phycology 12: 527–534, 2000.
[19] http://www.trendtop.com.tw/
[20] Nicotra A.B., Atkin O.K., Bonser S.P., Davidson A.M., Finnegan E.J., Mathesius U., Poot P., Purugganan M.D., Richards C.L., Valladares F. and van Kleunen M. (2010)
[21] 陳誌成.由生物體內碳循環探討生物鈣化的促進.崑山科技大學.機械工程.系碩士論文. (2009)


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top