跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 12:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊淳超
研究生(外文):Chun-Chao Yang
論文名稱:製備不同Cr/Cu比例與摻雜Zn之p-CuCrO2薄膜
論文名稱(外文):Preparation of different Cr/Cu ratios and Zn doped CuCrO2 thin films
指導教授:陳弘穎陳弘穎引用關係
指導教授(外文):Hong-Ying Chen
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:79
中文關鍵詞:CuCrO2、鉻銅比、鋅摻雜、p-n異質接面
外文關鍵詞:CuCrO2, Cr/Cu, Zn doped, p-n junction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:261
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本研究可分為改變鉻銅比及鋅摻雜對CuCrO2薄膜的微結構及光電性質的影響。
單一相之CuCrO2薄膜可在鉻銅比大於0.8以上生成,但當鉻銅比為0.7以下時,則會有CuO+CuCrO2相的生成。CuCrO2薄膜的穿透及光學能隙值隨鉻銅比降低而增加,穿透率可由45% (Cr/Cu=1)提升到62% (Cr/Cu=0.8),而光學能隙值由2.93 eV (Cr/Cu=1)提升到3.07 eV (Cr/Cu=0.8)。在鉻銅比為0.8時,薄膜具有最佳之導電率(0.15 S/cm)及最低的活化能(189 meV)。
單一相之CuCrO2之薄膜可在鋅摻雜小於3%以下生成,但當鋅摻雜5%則會有CuO+CuCrO2相的生成。CuCrO2薄膜穿透率隨鋅摻雜增加而增加,穿透率可由63% (0% Zn)提升到71% (3% Zn),而光學能隙值(1~3% Zn)皆約在3.1 eV。當摻雜3%鋅時具有最佳導電率(0.47 S/cm)及最低之活化能(130 meV)。我們將摻雜3%鋅之CuCrO2薄膜與ZnO形成p-n異質接面,具有二極體整流之效果。
In this study, the influence of different Cr/Cu ratios and Zn-doped in CuCrO2 films on the microstructure and optoelectronic properties of the thin films were examined.
When Cr/Cu ratio was greater than 0.8, the single CuCrO2 phase was obtained. Whereas Cr/Cu ratio was less than 0.7, CuO+CuCrO2 phases were found. The optical transmittance and optical bandgap were increasingly with Cr/Cu ratios decreasing. The optical transmittance was increasingly from 45% (Cr/Cu=1) to 62% (Cr/Cu=0.8) meanwhile the optical bandgap was enhanced from 2.93 eV (Cr/Cu=1) to 3.07 eV (Cr/Cu=0.8). As Cr/Cu=0.8 in CuCrO2 films has the best conductivity (0.15 S/cm) and the lowest activation energy (189 meV) for hole conduction.
When Zn doped in CuCrO2 films less than 3% has single phase , CuO+CuCrO2 phases were found at CuCrO2 films doped with 5% Zn. The optical transmittance was enhanced with increasing Zn doped, which was ramped from 63% (0% Zn) to 71% (3% Zn). The optical bandgap was approximately 3.1 eV (1~3% Zn). When Zn doped in CuCrO2 films has the best conductivity (0.47 S/cm) and the minimum activation energy (130 meV). Ultimately, ZnO were deposited onto CuCrO2 films (3% Zn) by using dc reactive sputtering technique to from a p-n junction. This junction exhibited the current rectification.
總目錄
中文摘要 I
Abstract II
致謝 III
總目錄 IV
圖目錄 VII
表目錄 X
第一章 緒論 1
1-1 前言 1
1-2 透明導電氧化物(Transparent conducting oxide,TCOs) 2
1-3 赤銅鐵礦結構簡介 3
1-4 研究動機 7
1-5 研究目的 8
第二章 文獻回顧 9
2-1 製備CuCrO2薄膜 9
2-2 物理製膜技術 9
2-2-1 脈衝雷射沉積法 (PLD) 9
2-2-2 濺鍍法 (Sputtering) 10
2-3 化學製膜技術 11
2-3-1 化學噴霧裂解法 (Chemical spray pyrolsis) 11
2-3-2 有機金屬化學氣相沉積法 (Metal-Organic CVD) 11
2-3-3 溶膠-凝膠法 (Sol-Gel method) 12
第三章 實驗方法 16
3-1 實驗流程圖 16
3-2 鉻銅不同莫爾比薄膜製備 18
3-3 鋅摻雜之銅鉻氧化物薄膜製備 19
3-4 分析儀器及其原理 20
3-4-1 X光繞射儀 (X-Ray Diffractomer ; XRD) 20
3-4-2 場發射掃描式電子顯微鏡 (Field-Emission Scanning Electron Microscope;FE-SEM) 21
3-4-3 紫外光/可見光吸收光譜 (UV-VIS) 21
3-4-5 熱針 (Hot Probe) 25
3-4-6 霍爾效應 (Hall effect) 26
第四章 結果與討論 28
4-1 鉻銅不同莫爾比之CuCrO2薄膜分析 28
4-1-1 X光繞射分析 28
4-1-3 光學分析 38
4-1-4 電性分析 42
4-2 鋅摻雜對CuCrO2薄膜分析 48
4-2-1 X光繞射分析 48
4-2-2 微結構分析 51
4-2-3 光學分析 56
4-2-4 電性分析 59
4-3 p-n異質接面之二極體性質 64
4-3-1 銅鉻氧化物薄膜與氧化鋅薄膜之參數 64
4-3-2 p-n異質接面之特性分析 70
第五章 結論 74
參考文獻 77
簡歷 79
[1]T. Minami, Semicond. Sci. Technol., 20 (2005) S35
[2]楊明輝,「透明導電膜」,藝軒出版社,(2006)
[3]M.J. Alam, and D.C. Cameron, Thin Solid Films, 00 (2000) 455-459
[4]K.E. Lee, M. Wang, E.J. Kim, and S.H. Hahn, Curr. Appl Phys., 9 (2009) 683-687.
[5]H. Kawazoe, M. Yasukaw, H. Hyodo,M. Kurita,H. Yanagi and H. Hosono, Nature, 389 (1997) 939-942
[6]H. Kawazoe, H. Yanagi, K. Ueda, and H. Hosono, MRS Bull., 25 (2000) 28-36
[7]M. A. Marquardt, N. A. Ashmore, and D. P. Cann, Thin Solid Films, 496 (2006) 146-156.
[8]A.N. Banerjee, and K.K. Chattopadhyay, Prog. Cryst. Growth Charact. Mater., 50 (2005) 52-105.
[9]M. Ohashi, Y. Iida, and H. Morikawa, J. Am. Ceram. Soc., 85(2002) 270-272.
[10]R. Nagarajan, A.D. Draeseke, A.W. Sleight, and J. Tate, J. Appl. Phys, 89 (2001) 8022-8025.
[11]D. Li, X. Fang, Z. Deng, S. Zhou, R. Tao, W. Dong, T. Wang, Y. Zhao, G. Meng, and X. Zhu, J. Phys. D, 40 (2007) 4910-4915
[12]D. Li, X. Fang, Z. Deng, W. Dong, R. Tao, S. Zhou, J. Wang, T. Wang, Y. Zhao,and X. Zhu, J. Alloys Compd., 486 (2009) 462-467.
[13]K. Tonooka, and N. Kikuchi, Thin Solid Films, 515 (2006) 2415-2418.
[14]T. Minami, H. Tanaka, T. Shimakawa, and T. Miyata, Microelectronics: Design, Technology, and Packaging, edited by Derek Abbott, 5274 (2004) 399-405.
[15]G. Dong, M. Zhang, X. Zhao, H. Yan, C. Tian, and Y. Ren, Appl. Surf. Sci., 256 (2010) 4121-4124.
[16]S.H. Lim, S. Desu, and A.C. Rastogi, J. Phys. Chem. Solids, 69 (2008) 2047-2056.
[17]S. Mahapatra and S.A. Shivashankar, Chem. Vap. Deposition, 9 (2003) 238-240.
[18]蔡裕榮,周禮君,「以溶膠凝膠法製備透明導電氧化物薄膜的探討」,CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI) SEP. 60 (2002) 307-318.
[19]S. Götzendörfer, C. Polenzky, S. Ulrich, and P. Löbmann, Thin Solid Films, 518 (2009) 1153-1156.
[20]S. Götzendörfer, R. Bywalez, and P. Löbmann, Sol-Gel Sci. Technol., 52 (2009) 113-119.
[21]R. Bywalez, S. Götzendörfer, and P. L öbmann, J. Mater. Chem., 20 (2010) 6562-6570.
[22]J. Wang, P. Zheng, D. Li, Z. Deng, W. Dong, R. Tao, X. Fang, J. Alloys Compd., 509 (2011) 5715-5719.
[23]Y. Wang, Y. Gu, T. Wang, W. Shi, J. Alloys Compd., 509 (2011) 5897-5902.
[24]D. Li, X. Fang, Z. Deng, W. Dong, R. Tao, S. Zhou, J. Wang, T. Wang, Y. Zhao,and X. Zhu, J. Alloys Compd., 486 (2009) 619-621.
[25]D. Li, X. Fang, Z. Deng, A. Zhao, Z. Deng, W. Dong, R. Tao, Vacuum, 84 (2010) 851-856.
[26]T. Chiu, K. Tonooka, and N. Kikuchi, Thin Solid Films, 516 (2008) 5941-5947.
[27]T. Chiu, K. Tonooka, and N. Kikuchi, Vacuum, 83 (2009) 614-617.
[28]P.W. Sadik, M. Ivill, V. Cracium, and D. P. Norton, Thin Solid Films, 517 (2009) 3211-3215.
[29]M. O,Sullivan, P. Stamenov, J. Alaria, M. Venkatesan and, J.M.D. Coey, J. Phys. Conf. Ser., 200 (2010) 052021.
[30]S. Götzendörfer, P. Löbmann, J. Sol-Gel Sci. Technol., 57 (2011) 157-163.
[31]G. Golan, A. Axelevitch, B. Gorenstein, and V. Manevych, Microelectron. J., 37 (2006) 910-915.
[32]林榮昭,碩士論文,「利用銅膜和氧化鋁(Al2O3)基板直接反應生成CuAlO2薄膜的研究」,台灣大學。
[33]江昌文,碩士論文,「三角晶格反鐵磁石CuCr1-xO2 (0≤x≤0.1) 物理性質的研究」,淡江大學.
[34]B.J. Ingram, G.B. Gonzalez, D.R. Kammler, M.I. Bertoni, and T.O. Mason, J. Electroceram, 13 (2004) 167-175.
[35]K. T. Jacob, G. M. Kale, and G. N. K. Iyengar, Journal of Materials Science, 21 (1986) 2753.
[36]K. Tonooka, H. Bando, and Y. Aiura, Thin Solid Films, 445 (2003) 327-331.
[37]A.N. Banerjee, S. Nandy, C.K. Ghosh, and K.K. Chattopadhyay, Thin Solid Films, 515 (2007) 7324-7330.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top