跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/22 03:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃新雅
研究生(外文):Hsin-Ya Huang
論文名稱:利用化學沉澱法合成鈦酸鈉鹽粉末及其性質研究
論文名稱(外文):Synthesis and Properties of Monosodium Titanate Materials using Precipitation Method
指導教授:楊文都楊文都引用關係
指導教授(外文):Wein-Duo Yang
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:100
中文關鍵詞:MST化學沉澱法吸附劑過氧化氫鑭系金屬
外文關鍵詞:Monosodium titanatePrecipitation methodSorption agentHydrogen peroxideLanthanides
相關次數:
  • 被引用被引用:1
  • 點閱點閱:805
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用化學沉澱法採用異丙氧基鈦與氫氧化鈉作為前驅物合成鈦酸鈉鹽(monosodium titanate, MST),並以過氧化氫修飾MST吸附材料,以達到能有效處理含鑭系元素(如銣等)廢水。探討製備條件,反應溫度、溶液pH值、乾燥方式、H2O2 / Ti莫耳比和Na / Ti莫耳比等變因,並求得最佳的製備條件。再以XRD、BET、TGA、SEM、TEM、EDX和ICP等儀器,了解製程對顯微結構和吸附效率的影響。奈米H2O2 - MST 材料,對鑭系元素(如鈰、鈷、銪、釓、鑭、釹、釤、鍶及釔)具有大之吸附能力。在H2O2 / MST莫耳比為2時所製備之H2O2 - MST粉末具有最高的鑭系金屬離子交換容量,所製之H2O2 - MST吸附50 ppm之鑭系金屬離子,其容量高達190 mg/g。
This study applied titanium isopropoxide and sodium hydroxide as raw materials, to produce monosodium titanate (MST), by a precipitation method. Furthermore, hydrogen peroxide (H2O2) was utilized as a mineralizer to modify the as-prepared MST in order to obtain materials with more finely dispersed. The sorption capabilities of the MST sorbent material on treating lanthanide ions was significantly improved when treated with hydrogen peroxide. The processing parameters such as pyrolysis temperature, pH-value, drying, molar ratio of H2O2/ Ti and molar ratio of Na/Ti were studied. The H2O2-modified MST material was characterized by XRD, BET, TGA/DTA, SEM, TEM, EDX, and ICP. Those mechanisms for the evolution of MST in the process were proposed. The nanometric-sized peroxide-modified MST sorbent materials have significantly improved sorption capabilities for lanthanide ions, such as Ce2+, Co2+, Eu2+, Gd3+, La3+, Nd3+, Sm3+, Sr2+, Y3+. The best performance of lanthanide ions exchange of H2O2 - MST material can be prepared at the molar ratio of H2O2 / MST at 2. Moreover, the study exhibited the adsorption capacity of the as-prepared H2O2 - MST powder for 50 ppm lanthanide ion solution reaches 190 mg/g.
摘要 I
ABSTRACT II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
一、緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目的 3
二、文獻回顧 5
2.1 鈦酸鹽基本性質 5
2.2 一維鈦酸鈉奈米纖維的製備 6
2.2.1模板製造法 7
2.2.2自組裝法 8
2.2.3陽極氧化法 9
2.2.4液相法 10
2.2.4.1水熱法 10
2.2.4.2沉澱-燒結法 13
2.3 共沉澱反應條件的控制 15
2.4 雙氧水共沉澱影響鈦酸鹽粉末形狀之因素 15
2.4.1反應溫度對反應的影響 15
2.4.2鹼源的影響 15
2.5 鈦酸鈉奈米纖維的文獻回顧 18
2.6 鑭系金屬的性質 21
2.6.1氧化態 22
2.6.2鑭系元素的化學性質 22
2.6.3原子半徑和離子半徑 22
三、實驗方法與步驟 25
3.1 實驗藥品 25
3.1.1鈦酸鈉奈米纖維製備所用藥品 25
3.1.2金屬吸附實驗所用藥品 25
3.2 鈦酸鈉鹽實驗步驟 26
3.2.1鈦酸鈉鹽粉末製備 26
3.2.2鈦酸鈉奈米纖維粉末 27
3.3 分析儀器 28
3.3.1熱重及熱差分析儀 28
3.3.2 X-光繞射分析儀 28
3.3.3拉曼散射光譜分析 28
3.3.4穿透式電子顯微鏡 29
3.3.5能量分散分析儀 29
3.3.6 BET比表面積分析儀 29
3.3.7感應式耦合電漿原子發射光譜分析儀 29
3.4 實驗設計 33
3.4.1最適化參數 33
3.5吸附系統 35
3.6 鈦酸鈉鹽吸附鑭系金屬廢水實驗 35
四、結果與討論 37
4.1 鈦酸鈉鹽之物性分析 37
4.1.1熱重量分析儀 37
4.1.2 X-光繞射儀分析 40
4.1.3比表面積分析與孔徑分析 41
4.1.4場發射掃描式電子顯微鏡 46
4.1.5能量分散分析儀 50
4.2 鈦酸鈉鹽奈米纖維之物性分析 52
4.2.1 X-光繞射儀分析 52
4.2.2拉曼散射光譜分析 54
4.2.3比表面積分析與孔徑分析 56
4.2.4場發射掃描式電子顯微鏡 59
4.2.5穿透式電子顯微鏡 64
4.2.6能量分散分析儀 67
4.3 奈米粉末及奈米纖維吸附鑭系金屬溶液之檢測 69
五、結論 74
參考文獻 77
1.曲榮君,2009,金屬離子吸附材料,化學工業出版社,北京,1-2頁。
2.R. W. Lynch, 1976, Sandia Solidification Process Cumulative Report, Technical Report SAND-76-0105, Sandia Laboratories.
3.R. G. Dosch, 1976, The Use of Titanates in Decontamination of Defense Wastes, Technical Report SAND-78-0701, Sandia Laboratories.
4.S. Iijima, 1991, Helical Microtubules of Graphitic Carbon, Nature, 354, 56-58.
5.D. V. Bavykin, J. M. Friedrich, F. C. Walsh, 2006, Protonated Titanates and TiO2 Nanostructured Materials: Synthesis, Properties, and Applications, Advanced Materials, 18(21), 2807-2824.
6.T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, 1998, Formation of Titanium Oxide Nanotube, American Chemical Society, 14 (12), 3160-3163.
7.Q. Chen, W. Zhou, G. H. Du, L. M. Peng, 2002, Trititanate Nanotubes made Via a Single Alkali Treatment, Advanced Materials, 14 (17), 1208-1211.
8.X. M. Sun, Y. D. Li, 2003, Synthesis and Characterization of Ion-Exchangeable Titanate Nanotubes, Chemistry-A European Journal, 9 (10), 2229-2238.
9.D. V. Bavykin, V. N. Parmon, A. A. Lapkin, F. C. Walsh, 2004, The Effect of Hydrothermal Conditions on the Mesoporous Structure of TiO2 Nanotubes, Journal of Materials Chemistry, 14 (22), 3370-3377.
10.R. Yoshida, Y. Suzuki, S. Yoshikawa, 2005, Syntheses of TiO2(B) Nanowires and TiO2 Anatase Nanowires by Hydrothermal and Post-Heat Treatments, Journal of Solid State Chemistry, 178 (7), 2179-2185.
11.Y. Lan, P. Gao, X. H. Y. Zhu, Z. F. Zheng, T. Y. Yan, F. Wu, S. P. Ringer, D. Y.Song, 2005, Titanate Nanotubes and Nanorods Prepared From Rutile Powder, Advanced Functional Materials, 15 (8), 1310-1318.
12.E. Morgado, M. A. S. de Abreu, O. R. C. Pravia, B. A. Marinkovic, P. M. Jardim, F. C. Rizzo, A. S. Araujo, 2006, A Study on the Structure and Thermal Stability of Titanate Nanotubes as a Function of Sodium Content, Solid State Sciences, 8 (8), 888-900.
13.C. C. Tsai, H. S. Teng, 2006, Structural Features of Nanotubes Synthesized from NaOH Treatment on TiO2 with Different Post-Treatments, Chemistry of Materials, 18 (2), 367-373.
14.Z. Y. Yuan, B. L. Su, 2004, Titanium Oxide Nanotubes, Nanofibers and Nanowires, Colloids and Surfaces, A-Physicochemical and Engineering Aspects, 241 (1-3), 173-183.
15.R. Z. Ma, T. Sasaki, Y. Bando, 2004, Layer-by-Layer Assembled Multilayer Films of Titanate Nanotubes, Ag- or Au-Loaded Nanotubes, and Nanotubes/Nanosheets with Polycations, Journal of the American Chemical Society, 126 (33), 10382-10388.
16.R. Lynch, R. Dosch, B. Kenna, J. Johnstone, E. Nowak, 1976, The Sandia Solidification Process-A Broad Range Aqueous Solidification Method, In: IAEA Symposium on the Management of Radioactive Waste, 306-372.
17.R. W. Lynch, 1976, Sandia Solidifcation Process Cumulative Report, Technical Report SAND-76–0105, Sandia Laboratories.
18.D. T. Hobbs, R. L. Pulmano, M.G. Bronikowski, T.B. Edwards, H.L. Thacker, M.S. Blume, 2001, Strontium and Actinide Removal from Alkaline High-Level Waste Solutions, In: Proceedings of the 9th International High-Level Radioactive Waste Management Conference, 304-308.
19.M. C. Duff, D. B. Hunter, D. T. Hobbs, S. D. Fink, Z. Dai, J. P. Bradley, 2004, Mechanisms of Strontium and Uranium Removal from High-Level Radioactive Waste Simulant Solutions by the Sorbent Monosodium Titanate, Environmental Science & Technology, 38, 5201-5207.
20.M. Yoshimara, H. Suda, K. Okamoto, K. Loku, 1994, Hydrothermal Synthesis of Biocompatible Whiskers, Journal of Materials Science, 29 (13), 3399-3402.
21.N. Koparnova, Z. Zlatev, D. Genchev, G. Popovich, 1994, Cadmium Oxide Whisker Crystals Grown by the Vapour-Liquid-Solid Mechanism Using Various Elements as Growth Initiators, Journal of Materials Science, 29 (1), 103-110.
22.S. C. Tjong, Y. Z. Meng, 1998, Performance of Potassium Titanate Whisker Reinforced Polyamide-6 Composites, Polymer, 39 (22), 5461-5466.
23.M. Kobayashi, T. Takahashi, J. Takimoto, Kiyohito, 1995, Flow-Induced Whisker Orientation and Viscosity for Molten Composite Systems in a Uniaxial Elongational Flow Field, Polymer, 36 (20), 3927-3933.
24.S. P. Mishra, V. K. Singh, D. Tiwari, 1997, Radiotracer Technique in Adsorption Study XVI: An Efficient Removal of Cadmium Ions by Sodium Titanate from Aqueous Solutions, Applied Radiation and Isotopes, 48, 435-440.
25.S. L. Tan, T. L. Liu, H. W. Qi, Y. J. Zhang, 2005, Study on the Adsorption of Heavy Metal Ions in Waste Water with Potassium Tetratitanate Whisker, Bulletin of the Chinese Ceramic Society, 24 (6), 50-52.
26.R. S. Joel, D. Elisabeth, F. Pierre, 2004, Synthesis of Sodium Titanate Composites by Sol-Gel Method for Use in Gas Potentiometric Sensors, Journal of the European Ceramic Society, 24 (8), 2477-2483.
27.W. Mingdeng, K. Yoshinari, Z. Haoshen, S. Hideki, A. Hironori, 2005, Formation of Nanotubes TiO2 from Layered Titanate Particles by a Soft Chemical Process, Solid State Communications, 133, 493-497.
28.W. Mingdeng, K. Yoshinari, Z. Haoshen, S. Hideki, A. Hironori, 2004, A Simple Method to Synthesize Nanowires Titanium Dioxide form Layered Titanate Particles, Chemical Physics Letters, 400, 231-234.
29.V. Cardoso, A. Souza, P. Sartoratto, L. Nunes, 2004, The Ionic Exchange Process of Cobalt, Nickel and Copper(II) in Alkaline and Acid-Layered Titanates, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 248 (1-3), 145-149.
30.J. Yang, D. Li, H. Wang, X. Wang, X. Yang, L. D. Lu, 2001, Effect of Particle Size of Starting Material TiO2 on Morphology and Properties of Layered Titanates, Materials Letters, 50 (4), 230-234.
31.P. Szilvia, K. Laszlo, M. Vera, C. Pegie, V. Etienne, D. Lmre, 2005, The Influence of Temperature on the Structural Behaviour of Sodium Tri- and Hexa-Titanates and Their Protonated Forms, Journal of Solid State Chemistry, 178 (5), 1614-1619.
32.T. P. Feist, P. K. Davies, 1992, The Soft Chemical Synthesis of TiO2 (B) from Layered Titanates, Journal of Solid State Chemistry, 101 (2), 275-295.
33.M. Adachi, Y. Murata, M. Harada, S. Yoshikawa, 2000, Formation of Titania Nanotubes with High Photo-Catalytic Activity, The Chemical Society of Japan, 29 (8), 942-943.
34.M. Adachi, Y. Murata, I. Okada, 2003, Formation of Titania Nanotubes and Applications for Dye-Sensitized Solar Cells, Journal Electrochemical Society, 150 (8), G488-G493.
35.P. Hoyer, 1996, Formation of a Titanium Dioxide Nanotube Array, Langmuir, 12 (6), 1411-1413.
36.T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, 1999, Titania Nanotubes Prepared by Chemical Processing, Advanced Materials, 11 (15), 1307-1311.
37.X. Xiao, K. Ouyang, R. Liu, J. Liang, 2009, Anatase Type Titania Nanotube Arrays Direct Fabricated by Anodization Without Annealing, Applied Surface Science, 255 (6), 3659-3663.
38.K. N. Clson, R. L. Cook, 1959, Effect of Contamination Introduce During Wet Milling on the Electrical Properties of BaTiO3, Journal of the American Ceramic Society, 38, 499-503.
39.Y. N. Xia, P. D. Yang, Y. G. Sun, 2003, One-Dimensional Manostructures: Synthesis, Characterization, and Applications, Advanced Materials, 15 (5), 353-389.
40.B. B. Lakshmi, C. J. Patrissi, C. R. Martin, 1997, Sol-Gel Template Synthesis of Semiconductor Oxide Micro-and Nanostructures, Chemistry of Materials, 9 (11), 2544-2550.
41.B. B. Lakshmi, P. K. Dorhout, C. R. Martin, 1997, Sol-Gel Template Synthesis of Semiconductor Nanostructures, Chemistry of Materials, 9 (3), 857-862.
42.A. Michailowski, D. AlMawlawi, G. Cheng, M. Moskovits, 2001, Highly Regular Anatase Nanotuble Arrays Fabricated in Porous Anodic Templates, Chemical Physics Letters, 349, 1-5.
43.S. M. Liu, L. M. Gan, L. H. Liu, W. D. Zhang, H. C. Zeng, 2002, Synthesis of Single-Crystalline TiO2 Nanotubes, Chemistry of Materials, 14, 1391-1397.
44.H. J. Shin, C. D. Bae, H. J. Yoo, S. H. Kim, K. G. Lee, J. Y. Kim, 2008, Template-Directed Synthesis of Oxide Nanotubes: Fabrication, Characterization, and Applications, Chemistry of Materials, 20 (3), 756-767.
45.H. G. Yan, Y. L. Yang, Z. P. Fu, B. F. Yang, L. H. Xia, Y. D. Xu, F. Q. Li, 2006, Cathodic Electrodeposition of Ordered Porous Titania Films by Polystyrene Colloidal Crystal Templating, Chemistry Letters, 35 (8), 864-865.
46.P. D. Cozzoli, A. Kornowski, H. Weller, 2003, Low-Temperature Synthesis of Soluble and Processable Organic-Capped Anatase TiO2 Nanorods, Journal of the American Chemical Society, 125 (47), 14539-14548.
47.S. Kobayashi, K. Hanabusa, N. Hamasaki, M. Kimura, H. Shirai, S. Shinkai, 2000, Preparation of TiO2 Hollow-Fibers Using Supramolecular Assemblies, Chemistry of Materials, 12 (6), 942-943.
48.D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen, E. C. Dickey, 2001, Titanium oxide nanotube arrays prepared by anodic oxidation, Journal of Materials Research, 16, 3331-3334.
49.K. Shankar, G. K. Mor, H. E. Prakasam, S. Yoriya, M. Paulose, O. K. Varghese and C. A. Grimes, 2007, Highly-Ordered TiO2 Nanotube Arrays Up to 220 μm in Length: Use in Water Photoelectrolysis and Dye-Sensitized Solarcells, Nanotechnology, 18 (6), 065707- 065717.
50.Y. Ding, Z. L. Wang, 2004, Structure Analysis of Nanowires and Nanobelts by Transmission Electron Microscopy, The Journal of Physical Chemistry B, 108 (33), 12280-12291.
51.F. Fievet, J. P. Lagier, B. Blin, B. Beaudoin, M. Figlarz, 1989, Homogenous and Heterogeneous Nucleations in the Polyol Process For the Preparation of Micron and Submicron Size Metal Particles, Solid State Ionics, 32-33, Part 1, 198-205.
52.A. V. Prasadarao, M. Suresh, K. Sridhar, 1999, pH Dependent Coprecipitated Oxalate precursors – a thermal study of barium titanate, Materials Letters, 39 (6), 359-363.
53.Z. Y. Guo, 2001, Industrial Production of Superfine Barium Titanate by Oxalic Acid Method, Inorganic Salt Industry, 33 (5), 27-28.
54.Q. A. Zhu, R. K. Shi, 2002, Study on New Method for Synthesis of Strontium Titanate Powder, Inorganic Chemicals Industry, 34 (2), 5-7.
55.楊小明,彭子飛,1998,化學共沉澱法製備納米級CoTiO3粉末,華僑大學學報:自然科學版,19 (2),216-218。
56.張允什,王達,王春明,1992,高純鈦酸鋇超微粉的製備,公開號:1061764。
57.馬慧娟,1982,鈦冶金學,冶金工業出版社,北京。
58.Q. Zhang, S. Peng, Y. Li, 2010, Preparation of Sm2Ti2S2O5 by Promoted Coprecipitation-Gas Solid Reaction and its Performance for Photocatalytic Hydrogen Evolution Under Visible Light Irradiation, Department of Chemistry, Nanchang University.
59.D. Gong, C. A. Grimes, O. K. Varghese, W. C. Hu, R. S. Singh, Z. Chen, E. C. Dickey, 2001, Titanium Oxide Nanotube Arrays Prepared by Anodic Oxidation, Journal of Materials Research, 16 (12), 3331-3334.
60.J. M. Macak, H. Tsuchiya, L. Taveira, A. Ghicov, P. Schmuki, 2005, Self-Organized Nanotubular Oxide Layers on Ti-6A1-7Nb and Ti-6A1-4V Formed by Anodization in NH4F Solutions, Journal of Biomedical Materials Research Part A, 75A (4), 928-933.
61.M. Nyman, D. T. Hobbs, 2006, A Family of Peroxo-titanate Materials Tailored for Optimal Strontium and Actinide Sorption, Chemistry of Materials, 18 (26), 6425-6435.
62.J. Cao, J. Z. Sun, H. Y. Li, J. Hong, M. Wang, 2004, A Facile Room-Temperature Chemical Reduction Method to TiO2@CdS Core/Sheath Heterostructure Nanowires, Journal of Materials Chemistry, 14 (7), 1203-1206.
63.L. Kavan, M. Kalbac, M. Zukalova, I. Exnar, V. Lorenzen, R. Nesper, M. Graetzel, 2004, Lithium Storage in Nanostructured TiO2 Made by Hydrothermal Growth, Chemistry of Materials, 16 (3), 477-485.
64.H. B. Sharma, H. N. K. Sarma, A. J. Mansingh, 1999, Ferroelectric and Dielectric Properties of Sol-Gel Processed Barium Titanate Ceramics and Thin Films, Journal of Materials Science, 34 (6), 1385-1390.
65.A. Dan, P. K. Mukherjeeb, D. J. Chakravorty, 2005, Suppression of Ferroelectricity in Ultrathin Barium Titanate Films Grown within Mica-4 Interlayer Space, Journal of Materials Chemistry, 15, 1477-1480.
66.H. Izawa, S. Kikkawa, M. J. Koizumi, 1982, Synthetic Architectures of TiO2/H2Ti5O11•H2O, ZnO/H2Ti5O11•H2O, ZnO/TiO2/H2Ti5O11•H2O, and ZnO/TiO2 Nanocomposites, Journal of the American Chemical Society, 86, 5023-5026.
67.D. M. Yu, J. S. Wu, L. M. Zhou, D. R. Xie, S. Z. Wu, 2000, The Dielectric and Mechanical Properties of a Potassium-Titanate-Whisker-Reinforced PP/PA Blendet, Composites Science and Technology, 60, 499-508.
68.S. J. Kim, M. H. Cho, D. S. Lim, H. Jang, 2001, Synergistic Effects of Aramid Pulp and Potassium Titanate Whiskers in the Automotive Friction Material, Wear, 251, 1484-1491.
69.S. C. Tjong, Y. Z. Meng, 1999, Microstructural and Mechanical Characteristics of Compatibilized Polypropylene Hybrid Composites Containing Potassium Titanate Whisker and Liquid Crystalline Copolyester, Polymer, 40, 7275-7283.
70.T. Doi, Y. Iriyama, T. Abe, Z. Ogumi, 2005, Electrochemical Insertion and Extraction of Lithium Ion at Uniform Nanosized Li4/3Ti5/3O4 Particles Prepared by a Spray Pyrolysis Method, Chemistry of Materials, 17 (6), 1580-1582.
71.X. L. Yao, S. Xie, C. H. Chen, Q. S. Wang, J. H. Sun, Y. L. Li, S. X. Lu, 2005, Comparisons of Graphite and Spinel Li1.33Ti1.67O4 as Anode Materials for Rechargeable Lithium-Ion Batteries, Electrochimica Acta, 50 (20), 4076-4081.
72.S. Andersson, A. D. Wadsley, 1962, The Structures of Na2Ti6O13 and Rb2Ti6O13 and the Alkali Metal Titanates, Acta Crystalogr, 15, 194-201.
73.R. W. Lunch, R. G. Dosch, B. T. Kenna, J. K. Johnstone, E. J. Nowak, 1975, The Sandia Solidification Process-A Broad Range Aqueous Waste Solidification Method, Proceedings of the IAEA Symposium on the Management of Radioactive Waste, IAEA-SM-207/75, 361-373.
74.A. Clearfeld, J. Lehto, 1988, Preparation, Structure, and Ion-Exchange Properties of Na4Ti9O20 • xH2O, Journal of Solid State Chemistry, 73 (1), 98-106.
75.M. Sugita, M. Tsuji, M. Abe, 1990, Synthetic Inorganic Ion-Exchange Materials. LVIII. Hydrothermal Synthesis of a New Layered Lithium Titanate and its Alkali Ion Exchange, Bulletin of the Chemical Society of Japan, 63 (7), 1978-1984.
76.H. Y. Zhu, Y. Lan, X. P. Gao, S. P. Ringer, Z. F. Zheng, D. Y. Song, J. C. Zhao, 2005, Phase Transition between Nanostructures of Titanate and Titanium Dioxides via Simple Wet-Chemical Reactions, Journal of the American Chemical Society, 127 (18), 6730-6736.
77.M. Qamar, C. R. Yoon, H. J. Oh, N. H. Lee, K. Park, D. H. Kim, K. S. Lee, W. J. Lee, S. J. Kim, 2008, Preparation and photocatalytic activity of nanotubes obtained from titanium dioxide, Catalysis Today, 131, 3-14.
78.S. Zhang, L. M. Peng, Q. Chen, G. H. Du, G. Dawson, W. Z. Zhou, 2003, Formation Mechanism of H2Ti3O7 Nanotubes, Physical Review Letters, 91 (25), 256103-1-256103-4.
79.陳維旻,2007,(一) 三價鑭系金屬錯合物的合成及其光物理性質的探討、(二) 三價銥金屬錯合物的合成及其在奈米上的應用,碩士論文,國立清華大學化學研究所。
80.1989, General Electric Company, Chart of the Nuclides, Fourteenth Edition.
81.易憲武,1998,第七卷,鈧、稀土元素,無機化學叢書科學出版社,北京。
82.P. Pyykko, 1988, Relativistic Effects in Structural Chemistry, Chemical Reviews, 88 (3), 563-594.
83.G. Ertl, J. Weitkamp, H. Knözinger, 1997, Handbook of Heterogeneous Catalysis.
84.S. Andersson, A. D. Wadsley, 1961, The crystal structure of Na2Ti3O7, Acta Crystallogr, 14, 1245-1249.
85.Y. S. Huang, S. S. Lin, C. R. Huang, M. C. Lee, T. E. Dann, F. Z. Chien, 1989, Raman Spectrum of IrO2, Solid State Communications, 70 (5), 517-522.
86.Y. Su, M. L. Balmer, B. C. Bunker, 2000, Raman Spectroscopic Studies of Silicotitanates, The Journal of Physical Chemistry B, 104 (34), 8160-8169.
87.D. Wu, J. Liu, X. Zhao, A. Li, Y. Chen, N. Ming, 2006, Sequence of Events for the Formation of Titanate Nanotubes, and Naiben Nanofibers, Nanowires, and Nanobelts, Chemistry of Materials, 18 (2), 547-553.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top