跳到主要內容

臺灣博碩士論文加值系統

(100.28.132.102) 您好!臺灣時間:2024/06/23 06:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李武樺
研究生(外文):Wu-Wha Lee
論文名稱:電化學陰極共沉積法製備鈷-鎳氫氧化物複合電極及其電化學特性研究
論文名稱(外文):Cathodic electrodeposition of cobalt/nickel hydroxide composite electrodes and study of their electrochemical behavior
指導教授:吳茂松
指導教授(外文):Mao-Sung Wu
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:82
中文關鍵詞:電化學電容器氫氧化鈷氫氧化鎳陰極沉積法
外文關鍵詞:electrochemical capacitorcobalt hydroxidenickel hydroxidecathodic electrodeposition
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1006
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用電化學陰極共沉積方法製備高性能之奈米結構鈷鎳氫氧化物複合電極,在不同濃度比例的硝酸鈷與硫酸鎳電解液,以- 0.8 V電位進行共沉積反應,電極經150℃,0.5 hr後,可得到不同組成形態的鈷鎳氫氧化物電極。分別以XRD (X-ray diffraction)、SEM (scanning electron microscope)及EDS (energy dispersive X-ray spectrometer)來分析電極材料的晶格結構、表面形態及化學組成。電極在1 M KOH電解液中以循環伏安法與恆電流充放電來探討其電化學特性。
經由SEM圖形發現,以Co:Ni比為20:80的電解液沉積時,所獲得的電極有緻密的奈米網狀結構,且隨著Co比例的增加,其奈米片狀結構愈明顯。由XRD分析結果得知,當煆燒溫度在150 ℃時,分別有α-Ni(OH)2和α-Co(OH)2兩相共存。EDS的分析資料中可看出,鈷鎳氫氧化物複合電極的鈷/鎳比與電鍍液中的鈷/鎳比相近。
在電化學測試方面,鈷鎳氫氧化物複合電極在鈷:鎳比為20:80時,所測試的電容值為最高1510 F g-1,這是因為Ni(OH)2有較多的奈米網狀結構,亦即有較大的比表面積所致,但其循環壽命於3000次充放電後衰退近30%。容量衰退的現象隨著電極中Co的含量增加而改善。
This study used a cathodic electrodeposition method to deposit cobalt/nickel hydroxide composite electrodes with various nanostructures for high-performance electrochemical capacitors. The cobalt/nickel hydroxide electrodes were deposited directly onto the stainless steel foils at a potential of -0.8 V vs. SCE (saturated calomel electrode) in electrolytes with various Co:Ni ratios. Electrodes with various compositions and morphologies were obtained after annealing at 150 C for 0.5 h. The crystal structure, surface morphology, and chemical composition of deposited materials were characterized using XRD (X-ray diffraction), SEM (scanning electron microscope), and EDS (energy dispersive X-ray spectrometer), respectively. Cyclic voltammetry and galvanostatic charge/discharge were used to investigate the electrochemical performance of the deposited electrodes in 1 M KOH electrolyte.
SEM micrographs showed that when the cobalt content in electrolyte exceeds 20%, the deposited cobalt/nickel hydroxide has interconnected nanoflakes. XRD pattern revealed that at a calcination temperature of 150 C, the composite exhibit the coexistence of α-Ni(OH)2 and α-Co(OH)2 phases . Furthermore, EDS analysis demonstrated that the Co:Ni ratio in the composite electrode is similar to that in the plating solution.
The cobalt/nickel hydroxide electrode with a Co:Ni ratio of 20:80 showed the highest capacitance value of about 1510 Fg-1 due to the interconnected nanoflakes which can provide a large surface area for electrolyte access. However, its capacitance decreased to about 30% of its initial capacitance after 3000 cycling tests. The capacitance loss of the composite electrode during cycling test could be mitigated by increasing the cobalt content in the composite electrode.
總 目 錄

中文摘要………………………………………………………………………………I
英文摘要………………………………………………………………………………II
致謝…………………………………………………………………………………III
總目錄…………………………………………………………………………………IV
表目錄…………………………………………………………………………………VII
圖目錄…………………………………………………………………………………VIII
第 一 章 緒論………………………………………………………………………1
1-1研究緣起與目的………………………………………………………………1
1-2研究架構………………………………………………………………………3
第 二 章 文獻回顧…………………………………………………………………4
2-1儲能元件概述………………………………………………………………………………4
2-2電化學電容器…………………………………………………………………9
2-2-1電化學電容器之儲能原理與機制…………………………………………9
2-2-2電化學電容器的分類與介紹………………………………………………11
2-2-3電化學電容器的電極材料…………………………………………………14
2-2-4電化學電容器電解液的種類………………………………………………21
2-2-5電化學電容器的測試方法…………………………………………………22
2-2-6影響電化學電容器特性的因素……………………………………………24
2-2-7電化學電容器金屬氧化物電極的製備……………………………………26
第 三 章 實驗方法與步驟…………………………………………………………29
3-1不銹鋼(Stainless steel)基材前處理……………………………………………29
3-2電鍍液的配製…………………………………………………………………31
3-3電化學共沉積鈷-鎳氫氧化物複合電極_陰極定電壓沉積法………………32
3-4鈷-鎳氫氧化物複合電極熱處理……………………………………………33
3-5鈷-鎳氫氧化物複合電極材料基本物性分析………………………………33
3-6電化學特性分析………………………………………………………………33
3-7實驗藥品與材料………………………………………………………………37
3-8電化學分析儀…………………………………………………………………39
3-9實驗檢測儀器…………………………………………………………………40
第 四 章 結果與討論………………………………………………………………42
4-1 EDS(Energy Dispersive Spectrometer)分析…………………………………42
4-2熱處理溫度對鈷-鎳氫氧化物複合電極之XRD結構分析…………………46
4-3鈷-鎳氫氧化物複合電極之表面結構(SEM)分析……………………………48
4-4電化學特性分析與探討………………………………………………………51
4-4-1循環伏安法(Cyclic voltammetry)測試……………………………………51
4-4-2充放電(Galvanostatic charge/discharge)測試……………………………54
4-4-3循環壽命(Cycle life)測試…………………………………………………58
第 五 章 結論………………………………………………………………………61
5-1材料特性分析…………………………………………………………………61
5-2電化學測試分析………………………………………………………………62
參考文獻……………………………………………………………………………63
自傳…………………………………………………………………………………68
參考文獻

【1】羅正忠,張鼎張,“半導體製程技術導論”, 歐亞書局有限公司 (2002) 221.
【2】林宜慶,“超級電容器技術發展與應用趨勢分析(PART 1)”,車輛中心_國際合作
發展部.
【3】顏加政,“超高電容器之活性碳電極改質研究”,國立雲林科技大學碩士論文,
(2005).
【4】B.Pillay and J. Newman, “The influence of side reactions on
the performance of electrochemical double-layer capacitors”,
Journal of the Electrochemical Society, 143 (1996) 1806.
【5】B.V. Tilak, C.G. Rader and S.K. Rangarajan, “Techniques for
characterizing porous electrodes”, Journal of the
Electrochemical Society, 124 (1977) 1879.
【6】B.E.Conway, “Transition from 'supercapacitor' to 'battery'
behavior in electrochemical energy storage”, Journal of the
Electrochemical Society, 138 (1991) 1539.
【7】S.Sarangapani, B.V. Tilak and C.P. Chen, “Materials for
electrochemical capacitors”, Journal of the Electrochemical
Society, 143 (1996) 3791.
【8】V. Gupta, S. Gupta and N. Miura, “Potentiostatically deposited
nanostructured CoxNi1-x layered double hydroxides as electrode
materials for redox-supercapacitors”, Journal of Power Sources,
175 (2008) 680.
【9】李榮浩,“電化學沉積法製備奈米結構氧化鐵電極及其儲電特性之研究”,國立高雄應
用科技大學化學工程與材料工程系碩士論文, (2007).
【10】M. Ishikawa, M. Morita, M. Ihara and Y. Matsuda, “Electric
double-layer capacitor composed of activated carbon fiber
cloth electrodes and solid polymer electrolytes containing
alkylammonium salts”, Journal of the Electrochemical Society,
141 (1994) 1730.
【11】S.T Mayer, R.W. Pekala and J.L. Kaschmitter, “The
aerocapacitor : an electrochemical double-layer energy-storage
device”, Journal of the Electrochemical Society, 140 (1993)
446.
【12】G.L. Bullard, H.B. Sierra-Alcazar, H.L. Lee and J.L.
Morris, “Operating principles of the ultracapacitor”, IEEE
Transaction on Magnetics, 25 (1989) 102.
【13】陳怡倫,“以陽極沉積法製備之氧化錳電極的材料特性與擬電容性質”, 國立成功大
學材料科學及工程學系碩士論文, (2003).
【14】古明祥,“金屬添加物對碳系超級電容器特性之影響”, 私立大同大學材料工程研究
所碩土論文, (2007).
【15】D. Qu and H. Shi, “Studies of activated carbons used in double-
layer capacitors”, Journal of Power Sources, 74 (1998) 99.
【16】M. Nakamura, M. Nakanishi, and K. Yamamoto, “Influence of
physical properties of activated carbons on characteristics of
electric double-layer capacitors”, Journal of Power Sources,
60 (1996) 225.
【17】B.E. Conway, “Electrochemical supercapacitors”, Kluwer Academic
Publishers, New York, (1999).
【18】R. Kotz and M. Carlen, “Principles and applications of
electrochemical capacitors”, Electrochimica Acta, 45 (2000)
2483.
【19】A. Burke, “Ultracapacitors : why , how , and where is the
technology”, Journal of Power Sources, 91 (2000) 37.
【20】李弘傑,“氯化釕溶液在鈦基材之陽極氧化與陰極還原反應動力學機制探討與沉積物
特性分析與應用”, 國立高雄應用科技大學化學工程與材料工程系碩士論文,
(2005).
【21】江鴻儒,“循環伏安及電鍍法製備釕電極在電化學電容器應用”, 國立中正大學碩士
論文, (2001).
【22】X.M. Liu and X.G. Zhang,“NiO-based composite electrode with
RuO2 for electrochemical capacitors”, Electrochimica Acta , 49
(2004) 229.
【23】黃佑安,“電化學陽極沉積奈米結構氧化鎳電極及其電化學電容特性研究”, 國立高
雄應用科技大學化學工程與材料工程系碩士論文,(2008).
【24】J. H. Park and O Ok Park, “Hybrid electrochemical capacitors
based on polyaniline and activated carbon electrodes”, Journal
of Power Sources, 111 (2002) 185.
【25】J.P. Zheng and T.R. Jow, “The effect of salt concentration in
electrolytes on the maximum energy storage for double layer
capacitors”, Journal of the Electrochemical Society, 144
(1997) 2417.
【26】蔡文達,張仍奎,“金屬氧化物系列超高電容器簡介”,材料會訊,8 (2001) 35.
【27】M. Ue, K. Ida and S. Mori, “Electrochemical properties of
organic liquid electrolytes based on quaternary onium salts
for electrical double-layer capacitors”, Journal of the
Electrochemical Society, 141 (1994) 2989.
【28】A.J.Bard and L.R. Faulkner, “Electrochemical Methods
Fundamental and Application”, John Wiley & Sons, Canada,
(1980).
【29】J.P. Zheng, T.R. Jow, “A new charge storage mechanism for
electrochemical capacitors”, Journal of the Electrochemical
Society, 142 (1995) p.L6.
【30】C. Lin, J. A. Ritter and B. N. Popov, “Development of carbon-
metal oxide supercapacitors from sol-gel derived carbon-
ruthenium xerogels”, Journal of the Electrochemical Society,
146 (1999) 3155.
【31】J.C.F. Boodts and S. Trasatti, “Hydrogen evolution on iridium
oxide cathodes”, J. Applied Electrochemistry., 19 (1989) 255.
【32】R.P.Simpraga and B.E. Conway, “The real-are scaling factor in
electrocatalysis and in charge storage by supercapacitors”,
Electrochimica Acta, 43 (1998) 3045.
【33】R. Otogawa, M. Morimitsu and M. Matsunaga, “Effect of
microstructure of IrO2-based anodes on electrocatalytic
properties”, Electrochimica Acta, 44 (1998) 1509.
【34】J.M. Marracino and F. Coeuret and S. Langlois, “A first
investigation of flow-throughporous electrodes made of
metallic felts or foams”, Electrochimica Acta, 32 (1987) 1303.
【35】H.Y. Lee and S.W. Kim, “Expansion of active site area and
improvement of kinetic reversibility in electrochemical
pseudocapacitor electrode”, Electrochemical Solid-State
Letters, 4 (2001) A19.
【36】H.Y. Lee and J.B. Goodenough, “Brief communication
supercapacitor behavior with KCl electrolyte”, Journal of
Solid State Chemistry, 144 (1999) 220.
【37】H.Y. Lee, J.B. Goodenough and V. Manivannan, “Electrochemical
capacitors with KCl electrolyte”, Comptes Rendus Chimie, 2
(1999) 565.
【38】S.C. Pang and M.A. Anderson, “Novel electrode materials for
thin-film ultracapacitors:comparison of electrochemical
properties of sol-gel-derived and electrodeposited manganese
dioxide”, Journal of the Electrochemical Society, 147 (2000)
444.
【39】C.C. and T.W. Tsou, “Capacitive and textural characteristics of
hydrous manganese oxide prepared by anodic deposition”,
Electrochimica Acta, 47 (2002) 3523.
【40】C.C. Hu and Y.H. Huang, “Cyclic voltammetric deposition of
hydrous ruthenium oxide for electrochemical capacitors”,
Journal of the Electrochemical Society, 146 (1999) 2465.
【41】C.C. Hu and T.W. Tsou, “The optimization of specific
capacitance of amorphous manganese oxide for electrochemical
supercapacitor using experimental strategies”, Journal of
Power Sources, 115 (2003) 179.
【42】Y.C. Zhang, H. Wang, B. Wang, H. Yan, A. Ahniyaz and
M.Yoshimura, “Low temperature synthesis of nanocrystalline
Li4Mn5O12 by a hydrothermal method”, Materials Research
Bulletin, 37 ( 2002) 1411.
【43】S. Ardizzone, G. Fregonara and S. Trasatti, “ “Inner”
and “outer” active surface of RuO2 electrodes ”,
Electrochimica Acta, 35 ( 1990) 263.
【44】R. Kotz and S. Stucki, “Stabilization of RuO2 by IrO2 for
anodic oxygen evolution in acid media”, Electrochimica Acta,
31 (1986) 1311.
【45】J.P. Zheng, P.J. Cygan and T.R. Jow, “Hydrous ruthenium oxide
as an electrode material for electrochemical capacitors.”,
Journal of the Electrochemical Society, 142 (1995) 2699.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊