跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/13 17:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳文堡
研究生(外文):Wen-Pao Chen
論文名稱:光纖光學鑷夾應用於捕捉微粒與酵母菌之研究
論文名稱(外文):The Study of Optical Trapping for Manipulation of Dielectric Micro-particles and Yeast
指導教授:劉世崑劉世崑引用關係
指導教授(外文):Shih-Kun Liu
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:光電與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:104
中文關鍵詞:光鉗 光鑷夾光鉗 光鑷夾光鉗 光鑷夾
外文關鍵詞:光鉗 光鑷夾optical trap,opticaltweezerANDoptical trap,opticaltweezer
相關次數:
  • 被引用被引用:14
  • 點閱點閱:956
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
光學鑷夾在生物醫學應用方面已受到廣泛的研究。因光學鑷夾擁有非接觸式捕捉微粒的優點,已被視為是抓取微生物或細胞方面的利器。由於傳統的光學鑷夾系統架構較為複雜,本研究的目的為建立元件少、複雜度低且效率佳之光學鑷夾系統。為取代傳統的光學鏡片,此系統是以光纖微透鏡(lensed fiber)為光學鑷夾系統中的光捕捉元件。我們自製四種特定類型的光纖微透鏡,其中兩種僅經過緩衝氧化蝕刻液(BOE)蝕刻,而另兩種則是使用蝕刻和融燒方式進行製作。製作完光纖微透鏡後,利用Matlab的影像處理功能計算光纖微透鏡之曲率半徑,並以Zemax模擬光纖微透鏡之焦距與數值孔徑。

本研究使用的雷射光波長為532nm,樣本的微粒之粒徑平均為10μm、15μm。本實驗使用四種特定形狀之光纖微透鏡對微粒進行捕捉實驗。在固定光纖微透鏡的輸出光功率下,改變光纖微透鏡之插入角度,以觀察其捕捉效果,並量化分析各角度下之捕捉力(trapping force)。最後證實本光纖光學鑷夾系統具有捕捉微粒及酵母菌的能力。
Optical tweezers are widely studied in Biotechnology. This technology provides a non-contact means to capture particles, and to move them in accordance with our control. The traditional optical tweezer system is complex, and so our goal is to build a compact system with less optical elements involved. To replace the optical lens in the system, a lensed fiber is fabricated to serve as the optical trapping component of the optical tweezer system.

Optical lens is made on optical fiber by using a buffered oxide etchant (BOE) to etch one end of a commercial multimode optical fiber, and then by using an optical fiber fusion splicer to arc-heating the tip of the etched region. The result fiber is called the lensed fiber. A Matlab code is used to analyze the image of the lensed fiber so that the radius of curvature of the fiber can be extracted. Another software, Zemax, is used to analyze the focal length and numerical aperture of lensed fiber.

A laser system emitted at a wavelength of 532nm and the sample particle sizes of 10μm and 15μm are used respectively in this study. Four selected lensed fibers with different lens shape are used to trap particles. In the experiment, the output power from the end of the lensed fiber is fixed. The dependence of the insertion angle, which is an angle between the fiber and the horizontal, on the effect of trapping is observed. A numerical calculation conducted is to study the trapping effect at various insertion angles. The experiment has successfully shown that our homemade optical tweezer system can trap and move micro particle(s) as well as yeast(s) at will. A quantitative analysis on the trapping force is conducted to optimize our optical tweezer system.
中文摘要
英文摘要
致謝
目錄
表目錄
圖目錄
第一章 緒論
1.1 背景介紹
1.2 研究動機與目的
1.3 論文架構
第二章 光學鑷夾原理
2.1 幾何光學模型
2.2 電磁波模型
第三章 光纖光學鑷夾
3.1 光纖光學鑷夾系統介紹
3.2 各式光纖微透鏡製程及分析
3.2.1 種類與製程
3.2.2 蝕刻
3.2.3 融燒
3.2.4 光纖微透鏡製程
3.2.5 光學軟體分析
第四章 實驗設計與結果分析
4.1 光纖微透鏡捕捉力之實驗設計
4.2 捕捉力分析
4.3 捕捉酵母菌實驗
第五章 結論與未來工作
結論
未來工作
參考文獻
附錄一 液體黏滯係數實驗
附錄二 Matlab計算取率半徑程式
附錄三 光纖熔燒步驟
附錄四 微粒群聚現象
1.A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett., vol. 24, pp. 156-159, 1970.
2.A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and Steven Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett., vol. 11, pp. 288-290, 1986.
3.K. Taguchi, and N. Watanabe, “Single-beam optical fiber trap,” Journal of Physics: Conference Series, vol. 61, pp. 1137-1141, 2007.
4.K. Taguchi, H. Ueno, and M. Ikeda, “Optical trapping of dielectric particle and biological cell using optical fibre,” Electron. Lett., vol. 33, pp. 413-414, 1997.
5.Kozo Taguchi, Kentaro Atsuta, Takeshi Nakata, and Masahiro Ikeda, “Experimental analysis of optical trapping system using tapered hemispherically lensed optical fiber,” Opt. rev., vol. 6, pp. 224-226, 1999.
6.K. Taguchi, H. Ueno, and M. Ikeda, “Rotational manipulation of a yeast cell using optical fibres,” Electron. Lett., vol. 33, pp. 1249-1250, 1997.
7.Kozo Taguchi, Kentaro Atsuta, Takeshi Nakata, and Masahiro Ikeda, “Levitation of a microscopic object using plural optical fibers,” Optics Communications, vol. 176, pp. 43-47, 2000.
8.A. Constable, Jinha Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a-fiber-optical light-force trap,” Opt. Lett., vol. 18, pp. 1867-1869, 1993.
9.Eric R. Dufresne, Gabriel C. Spalding, Matthew T. Dearing, Steven A. Sheets, and David G. Grier, “Computer-generated holographic optical tweezer arrays,” Review of Scientific Instruments, vol. 72, pp. 1810–1816, 2001.
10.Liesener J., Reicherter M., Haist T., and Tiziani H. J., “Multi-functional optical tweezes using computer-generated holograms,” Optics Communications, vol. 185, pp. 1810-1816, 2000.
11.Curtis J. E., Koss B. A., and Grier D. G., “Dynamic holographic optical tweezers,” Optics Communications, vol. 207, pp. 169-175, 2002.
12.魏名佐、花國鋒、許喬威、柯孟楊、曾凱雩、許先業、邱爾德,“藉由光鉗探討靈芝多醣體對於巨噬細胞的影響”,物理雙月刊,第29卷,第6期,第1034-1039頁,2007。
13.陳雄、許芳文、艾群,“利用近紅外光鉗捕抓紅血球及精蟲之研究”, 生物機電與農機科技論文發表會,2009。
14.黃葵騰,“應用光鉗系統研究助凝血與抗凝血藥物之療效”,明新科技大學,電機工程研究所碩士論文,2009。
15.A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J., vol. 61, pp. 569-582, 1992.
16.A. Ashkin, “Trapping of atoms by resonance radiation pressure,” Phys. rev. Lett., vol. 40, pp. 729-732, 1978.
17.維基百科,http://zh.wikipedia.org/wiki/%E5%85%89%E7%BA%96。
18.葉斯銘,橢圓光纖微透鏡之研究,國立中山大學,光電工程研究所博士論文,2005。
19.H. Kuwahara, M. Sasaki, and N. Tokoyo, “Efficient coupling from semiconductor lasers into single-mode fibers with tapered hemispherical ends,” Applied Optics, vol. 19, no. 15, pp. 2578-2583, 1980.
20.W. Bludau, and R. Rossberg, “Low-loss laser-to-fiber coupling with negligible optical feedback,” Journal of Lightwave Technology, vol. LT-3, pp. 294-302, 1985.
21.A. Kotsas, H. Ghafouri-Shiraz, and T. S. M. Maclean, “Microlens fabrication on single-mode fibres for efficient coupling from laser diodes,” Optical And Quantum Electronics, vol. 23, pp. 367-378, 1991.
22.K. R. Kim, S. Chang, and K. Oh, “Refractive microlens on fiber using UV-curable fluorinated acrylate polymer by surface-tension,” Photonics Technology Lett., vol. 15, pp. 1100-1102, 2003.
23.H. M. Yang, S. Y. Huang, C. W. Lee, T. S. Lay, and W. H. Cheng, “High-Coupling tapered hyperbolic fiber microlens and taper asymmetry effect,” Journal of Lightwave Technology, vol. 22, pp. 1395-1401, 2004.
24.Matlab/Simulink, Release R2007a
25.S. Koike, H. Takahashi, K. Tanaka, M. Hirota, K. Takita, and G. Masuya, “Correction method for particle velocimetry data based on the stokes drag law,” AIAA Journal, vol. 45, no. 11, pp. 2770-2777, 2007.
26.T.T. Perkins, D.E. Smith, R.G. Larson, and S. Chu, “Stretching of a single tethered polymer in a uniform flow,” Science, vol. 268, pp. 83-87, 2005.
27.M.T. Wei, K.T. Yang, A.Karmenyan, and A. Chiou, “Three-dimensional optical force field on a Chinese hamster ovary cell in a fiber-optical dual-beam trap,” Optics Express, vol. 14, no. 7, pp.3056-3064, 2006.
28.C.J. McMullin, H. P. Lee, and E.R. Lyons, “Demonstration of trapping, motion control, sensing and fluorescence detection of polystyrene beads in a multi-fiber optical trap,” Optics Express, vol. 13, no. 7, pp. 2634-2642, 2005.
29.A. A. Ranha Neves, A. Fontes, C. L. Cesar, R. Cingolani1, and D. Pisignano, “Axial optical trapping efficiency through a dielectric interface,” American Physical Society, vol. 76, no. 6, pp. 1-8, 2007.
30.Eirini Papagiakoumou, Dorel Pietreanu, Mersini I. Makropoulou, Eugenia Kovacs, and Alexander A. Serafetinides, “Evaluation of trapping efficiency of optical tweezers by dielectrophoresis,” Journal of Biomedical Optics, vol. 11, pp. 156-162, 2006.
31.Zhaohui Hu, Jia Wang, and Jinwen Liang, “Experimental measurement and analysis of the optical trapping force acting on a yeast cell with a lensed optical fiber probe,” Optics & Laser Technology, vol. 39, pp. 475–480, 2007.
32.Anna Chiara De Luca, Giovanni Volpe, Anna Morales Drets, Maria Isabel Geli, Giuseppe Pesce, Giulia Rusciano, Antonio Sasso, and Dmitri Petrov, “Real-time actin-cytoskeleton depolymerization detection in a single cell using optical tweezers,” Optics Express, vol. 15, no. 13, pp. 7922-7932, 2007.
33.Gajendra Pratap Singh, Giovanni Volpe, Caitriona M. Creely, Helga Gro tsch, Isabel M. Geli, and Dmitri Petrov, “The lag phase and G1 phase of a single yeast cell monitored by Raman microspectroscopy,” J. Raman Spectrosc, vol. 37, pp. 858–864, 2006.
34.國立高雄應用科技大學編輯委員會,物理實驗,第75-80頁,台灣復文興業股份有限公司,台南。
35.維基百科,http://en.wikipedia.org/wiki/Viscosity。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top