(3.236.122.9) 您好!臺灣時間:2021/05/12 20:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:黃俊銓
研究生(外文):Huang,Jiun-Chiuan
論文名稱:利用本土菌株Clostridium pasteurianum CH4進行以甘油為碳源之連續式丁醇醱酵
論文名稱(外文):Continuous butanol fermentation with indigenous Clostridium pasteurianum CH4 using glycerol as carbon source
指導教授:吳坤哲張嘉修張嘉修引用關係潘建亮
指導教授(外文):Wu,Ken-JerChang,Jo-ShuPan,Jian-Liang
口試委員:潘建亮張嘉修陳博彥魏毓宏陳俊延
口試委員(外文):Pan,Jian-LiangChang,Jo-ShuChen,bo-yanWei,Yu-HongChen,Chun-Yen
口試日期:2011-07-08
學位類別:碩士
校院名稱:高苑科技大學
系所名稱:化工與生化工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:89
中文關鍵詞:甘油丁醇回應曲面法連續式醱酵水力停留時間
外文關鍵詞:Clostridium pasteurianum
相關次數:
  • 被引用被引用:3
  • 點閱點閱:265
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
丁醇是目前最具潛力的新型生物燃料之一,它具備潔淨環保、永續再生、高熱能值與運輸便利等優點。本研究以自行篩選的本土厭氧菌株Clostridium pasteurianum CH4,利用甘油為碳源生產丁醇。結果發現,當甘油濃度為100 g/L時,可獲得丁醇最大生產濃度與產率,分別為13.46 g/L 與0.204 mol butanol/mol glycerol。再以回應曲面實驗設計法獲得到FeSO4與yeast extract之最佳添加濃度為4.45 g/L與26.68 g/L。之後以上述最佳培養基配方進行連續式(continuous stirred-tank reactor, CSTR)醱酵生產丁醇,探討水力停留時間 (HRT) 與pH control對於丁醇產率的影響。結果顯示,在HRT = 8h時,可獲得最大丁醇產率0.19 mol butanol/mol glycerol,而調控pH值有助於提升1, 3-丙二醇產量。
Butanol is one of the most potential new biofuels and it has the benefit of clean, environmental friendly, sustainable regeneration, high heat value and convenient for transport. In this study, the indigenous anaerobic bacteria, Clostridium pasteurianum CH4, isolated in our lab was used to produce butanol by utilizing glycerol as the carbon source. The results showed that the maximum concentration and yield of butanol was 13.46 g/L and 0.204 mol/mol glycerol, respectively, when the concentration of glycerol was 100 g/L. Sequentially, FeSO4 of 4.45 g/L and yeast extract of 26.68 g/L was given as the optimal concentration by the RSM (response surface methodology) experimental design. Then, butanol was produced by CSTR under the optimal condition and the effect of hydraulic retention time (HRT) and pH control on butanol yield was investigated. As the results, the maximum butanol yield of 0.19 mol/mol glycerol was obtained with HRT = 8h and the production of 1, 3-propandiol was improved by pH control.
目錄
摘要 I
Abstract II
目錄 IV
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 2
第二章 文獻回顧及原理 3
2.1 甘油的來源 3
2.1.1 利用化學法將甘油轉化成高價值的產品 4
2.1.2 以甘油為料原利用醱酵法生產燃料和化學品 6
2.2產氫方法 9
2.2.1 熱化學法 9
2.2.2 電化學法 9
2.2.3 生物法 9
2.3丁醇之生產 13
2.3.1 丁醇於工業上之發展與應用 13
2.3.2 化學法合成丁醇 15
2.3.3 微生物法進行丁醇之生產 16
2.3.4甘油生產生質丁醇 19
2.4 回應曲面法 (Response surface methodology,簡稱RSM) 21
2.4.1 回應曲面法之介紹 21
2.4.2 回應曲面法之原理 21
2.4.3 中心混成設計 (Central Composite Design) 24
第三章 實驗材料與方法 26
3.1 實驗藥品 26
3.1.1 碳源 26
3.1.2 緩衝鹽類 26
3.1.3 無機鹽類 26
3.1.4 其他 26
3.2 實驗菌株來源 27
3.3 Clostridium pasteurianum 轉化甘油為butanol 28
3.3.1培養基組成 28
3.4分析儀器及方法 29
3.4.1液相代謝產物組成分析 29
3.4.2 氣體組成分析 30
3.4.3菌量分析 30
3.5 批次式生產丁醇實驗儀器裝置與方法 30
3.5.1批次實驗儀器設備 30
3.5.2 Clostridium pasteurianum 生產butanol之儀器設備 31
3.5.3 不同Anaerobic reagent對Butanol產量之影響 31
3.5.4以甘油為碳源對Butanol產量之影響 32
3.5.5以甘油為碳源對Butanol產量之影響 32
3.5.6不同FeSO4對Butanol產量之影響 32
3.5.7不同yeast extract對於生產丁醇之影響 33
3.6 連續式生產丁醇實驗儀器裝置與方法 34
3.6.1 實驗儀器 34
3.6.2 探討不同HRT之實驗操作步驟 35
3.6.3 探討不同pH之實驗操作步驟 35
第四章 結果與討論 38
4.1 探討不同碳源對丁醇產量之影響 38
4.1.1 以甘油為碳源之影響 38
4-1-2以葡萄糖為碳源之影響 39
4.2 Anaerobic reagent對丁醇產量之影響 42
4.3 探討因子對丁醇生成之影響 42
4.3.1 FeSO4濃度對丁醇產量之影響 42
4.3.2 Yeast extract濃度對於生產丁醇之影響 45
4.4 以實驗設計法探討FeSO4和yeast extract對丁醇生產之最佳濃度 45
4.4.1 丁醇產量最佳化 45
4.4.2 丁醇速率最佳化 48
4.4.3 丁醇產率最佳化 48
4.5 利用CSTR進行丁醇之生成 51
4.6 HRT對副產物生成之影響 51
4.6.1 不同HRT對碳源利用率的影響 51
4.6.2 HRT對各種產物生成之影響 55
4.7 pH 控制對CSTR丁醇生成之影響效應 59
4.8 pH 控制產物之影響 62
4.8.1 pH 控制對碳源利用之影響 62
4.8.2 pH 控制對副產物之影響 62
4-9 HRT與pH control對產物影響的比較 67
第五章 結論 70
參考文獻 71


Asad UR., Saman WRG, Nomura N, Sato S, Matsumura M, (2008): “Pre-treatment and utilization of raw glycerol from sunflower oil biodiesel for growth and 1,3-propanediol production by Clostridium butyricum”, J. Chem. Technol. Biotechnol., Vol. 83, pp. 1072–1080.
Birgit D., Hurbert B., Gerhard G., (1992):“Parameters Affecting Solvent Production by Clostridium pasteurianum”, Appl. Environ. Microbiol., Vol. 58(4), pp. 1233-1239.
Biebl H. 2001. Fermentation of glycerol by Clostridium pasteurianum - batch and continuous culture studies. Journal of Industrial Microbiology & Biotechnology 27:18-26.
Bochman M, Cotton FA, Murillo CA, Wilkinson G. 1999. Advanced inorganic chemistry. USA: John Wiley & Sons, Inc.
Box G. E. P., and Wilson k. b., On the experimental attinment optimum cinditions. J. Roy. Statist. Soc. B13 : 1-45, 1951.
Box G. E. P., Hunter W., and Hunter J. S., Statistics for experimenters. John Wiley and Sons, Inc., New York., 1978.
Ciriminna R, Palmisano G, Della Pina C, Rossi M, Pagliaro M. 2006. One-pot electrocatalytic oxidation of glycerol to DHA. Tetrahedron Letters 47:6993-6995.
Choi WJ. 2008. Glycerol-based biorefinery for fuels and chemicals. Recent Patents on Biotechnology 2:173-180.
Deckwer WD (1995):“Microbial conversion of glycerol to 1,3-propanediol”, FEMS Microbiol. Rev, Vol. 16, pp. 143–149.
Das D, Veziroglu TN. 2001. Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy 26:13-28.
Dabrock B, Bahl H, Gottschalk G. 1992. Parameters Affecting Solvent Production by Clostridium pasteurianum. Applied and Environmental Microbiology 58:1233-1239.
Dasari MA, Kiatsimkul PP, Sutterlin WR, Suppes GJ. 2005. Low-pressure hydrogenolysis of glycerol to propylene glycol. Applied Catalysis a-General 281:225-231.
Durre P. 2008. Fermentative butanol production - Bulk chemical and biofuel. Incredible Anaerobes: From Physiology to Genomics to Fuels 1125:353-362.
Desai RP, Nielsen LK, Papoutsakis ET. 1999. Stoichiometric modeling of Clostridium acetobutylicum fermentations with non-linear constraints. Journal of Biotechnology 71:191-205.
Falbe J. 1970. Carbon monoxide in organic synthesis. Berlin-Heidelberg- New York: Springer Verlag.
Goldemberg, J. (2007):“Ethanol for a Sustainable Energy Future”, Science, Vol.315, pp.808-810.
Goldemberg, J., and Johansson, T.B., (eds.), (2004):“World Energy Assessment Overview, 2004 Update”, United Nations Development Programme, United Nations Department of Economic and Social Affairs, and World Energy Council, New York, 85.
Himmeldlau D. M., Process analysis by statistical methods. John Wiley and sons , Inc., New York, pp.230-292, 197.
Khuri A. I., and J. A. C. Cornell, Response Surfaces : Designs and Analysis. John Wiley and Sons, New York.
Jones DT, Woods DR. 1986. Acetone-Butanol Fermentation Revisited. Microbiological Reviews 50:484-524.
Lee PC, Lee WG, Lee SY, Chang HN. 2001. Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source. Biotechnology and Bioengineering 72:41-48.
Lee SM, Cho MO, Park CH, Chung YC, Kim JH, Sang BI, Um Y. 2008a. Continuous butanol production using suspended and immobilized Clostridium beijerinckii NCIMB 8052 with supplementary butyrate. Energy & Fuels 22:3459-3464.
Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS. 2008b. Fermentative Butanol Production by Clostridia. Biotechnology and Bioengineering 101:209-228.
Ma FR, Hanna MA. 1999. Biodiesel production: a review. Bioresource Technology 70:1-15.
Mariano AP, Costa CBB, de Angelis DD, Maugeri F, Atala DIP, Maciel MRW, Maciel R. 2009. Optimization Strategies Based on Sequential Quadratic Programming Applied for a Fermentation Process for Butanol Production. Applied Biochemistry and Biotechnology 159:366-381.
Morntgomery D. C., Design and analysis of experiments. John Wiley and Sons, Inc., New York., 1984.
Moxley G, Zhu ZG, Zhang YHP. 2008. Efficient sugar release by the cellulose solvent-based lignocellulose fractionation technology and enzymatic cellulose hydrolysis. Journal of Agricultural and Food Chemistry 56:7885-7890.
Mu Y, Yu HQ, Wang G. 2007. A kinetic approach to anaerobic hydrogen-producing process. Water Research 41:1152-1160.
Nitisinprasert S, Temmes A. 1991. The characteristics of a new non-spore-forming cellulolytic mesophilic anaerobe strain CMC126 isolated from municipal sewage sludge. Journal of Applied Bacteriology 71:154-161.
Pagliaro M, Ciriminna R, Kimura H, Rossi M, Della Pina C. 2007. From glycerol to value-added products. Angewandte Chemie-International Edition 46:4434-4440.
Papanikolaou S, Ruiz-Sanchez P, Pariset B, Blanchard F, Fick M (2000):“High production of 1,3-propanediol from industrial glycerol by newly isolated Clostridium butyricum strain”, J. Biotechnol, Vol. 77, pp. 191–208.
Qureshi N, Meagher MM, Huang J, Hutkins RW. 2001. Acetone butanol ethanol (ABE) recovery by pervaporation using silicalite-silicone composite membrane from fed-batch reactor of Clostridium acetobutylicum. Journal of Membrane Science 187:93-102.
Qureshi N, Saha BC, Hector RE, Cotta MA. 2008. Removal of fermentation inhibitors from alkaline peroxide pretreated and enzymatically hydrolyzed wheat straw: Production of butanol from hydrolysate using Clostridium beijerinckii in batch reactors. Biomass & Bioenergy 32:1353-1358.
Soares RR, Simonetti DA, Dumesic JA. 2006. Glycerol as a source for fuels and chemicals by low-temperature catalytic processing. Angewandte Chemie-International Edition 45:3982-3985.
Stiegel GJ, Ramezan M. 2006. Hydrogen from coal gasification: An economical pathway to a sustainable energy future. International Journal of Coal Geology 65:173-190.
Suto M, Tomita F. 2001. Induction and catabolite repression mechanisms of cellulase in fungi. Journal of Bioscience and Bioengineering 92:305-311.
Tashiro Y, Takeda K, Kobayashi G, Sonomoto K, Ishizaki A, Yoshino S. 2004. High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pH-stat continuous butyric acid and glucose feeding method. Journal of Bioscience and Bioengineering 98:263-268.
Taconi KA, Venkataramanan KP, Johnson DT. 2009. Growth and Solvent Production by Clostridium pasteurianum ATCC (R) 6013 (TM) Utilizing Biodiesel-Derived Crude Glycerol as the Sole Carbon Source. Environmental Progress & Sustainable Energy 28:100-110.
Wittlich P, Schlieker M, Jahnz U, Willke T, Vorlop KD (1999):“Bioconversion of raw glycerol to 1,3-propanediol by immobilized bacteria”, In: Proceedings Ninth European Congress on Biotechnology, July 11–15, Brussels, no. P2762, ISBN 805215-1-5.
Yazdani SS, Gonzalez R. 2007. Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Current Opinion in Biotechnology 18:213-219.
Zverlov VV, Berezina O, Velikodvorskaya GA, Schwarz WH. 2006. Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery. Applied Microbiology and Biotechnology 71:587-597.
洪哲穎、陳國誠,回應曲面實驗設計法在微生物酵素生產之應用,化工期刊,第39卷,第二期,第3~18頁 (2009)
林祺能,固定化細胞產氫,逢甲大學工程系碩士論文(2002)
羅泳中,氮源種類與碳-氮-磷比對連續醱酵產氫之影響,逢甲大學化學工程系碩士論文(2005)
羅泳勝,以反應曲面實驗設計法探討本土厭氧菌株Clostridium butyicum CGS2之最佳醱酵產氫條件,成功大學化學工程學系碩士論文(2005)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔