跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:8e11:74e4:2207:41a8) 您好!臺灣時間:2025/01/15 18:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王佐華
研究生(外文):Wang,Tso-Hua
論文名稱:導電性脂肪族-芳香族聚酯共聚合物複合材之研究
論文名稱(外文):A Study of Conductive Aliphatic-Aromatic Copolymer Composites Material
指導教授:吳進三
指導教授(外文):Wu,Chin-San
口試委員:葉正濤顏福杉廖心慈
口試委員(外文):Yeh,Jen-TautYen,Fu-ShanLiao,Hsin-Tzu
口試日期:2011-06-09
學位類別:碩士
校院名稱:高苑科技大學
系所名稱:化工與生化工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:120
中文關鍵詞:導電性高分子聚苯胺聚對苯二甲酸己二酸丁二醇酯
外文關鍵詞:conductive polymerPolyanilinesPoly(butylene adipate-co-terephthalate)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:242
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
本研究以自製之聚苯胺聚合物,與聚對苯二甲酸己二酸丁二醇酯共聚合物,在熔融狀態下製備成複合材,並探討其性質。且利用丙烯酸(AA)接枝於聚對苯二甲酸己二酸丁二醇酯共聚合物,藉以形成聚對苯二甲酸己二酸丁二醇酯共聚物側鏈上之羧酸基;可與聚苯胺(聚合物)胺基相結合形成醯胺基,用以增進聚苯胺(聚合物)和聚對苯二甲酸己二酸丁二醇酯基材間的相容性。為掌握複合材之基本性質,分別以霍式轉換紅外線光譜儀(FTIR)與核磁共振儀(NMR)分析其化學結構與鍵結關係;紫外線分析儀(UV-VIS)測得其光學性質;微差掃描熱分析儀(DSC),測得其結構;再以熱重分析儀(TGA),測得混鍊物之熱安定性;電阻測試器與循環伏安計量儀(CV)測得導電性質;萬能試驗機及掃描式電子顯微鏡(SEM)測得其機械性質與表面型態;最後再利用微生物Escherichia coli ( BCRC 10239 )進行抗菌試驗,分析其抗菌效果。
從結果發現,接枝丙烯酸之聚對苯二甲酸己二酸丁二醇酯/聚苯胺(聚合物)複合材與聚對苯二甲酸己二酸丁二醇酯/聚苯胺聚合物(複合材)相較之下,前者的導電性質和機械性質有明顯的上升,這是因為丙烯酸接枝聚對苯二甲酸己二酸丁二醇酯的側鏈羧酸基與聚苯胺的胺基形成醯胺基影響所致;且又在導電度測試中發現,隨著聚苯胺含量增加,其聚對苯二甲酸己二酸丁二醇酯/聚苯胺(聚合物)複合材的導電度也隨之增加,這是由於聚苯胺本身即具有導電性所導致。而由抗菌測試結果分析觀察可得知,隨著聚苯胺含量增加,聚對苯二甲酸己二酸丁二醇酯/聚苯胺(聚合物)複合材的抗菌性也隨之上升,但由於聚苯胺本身即具有相當良好的殺菌效應,因此在聚苯胺聚合物的存在下,其聚對苯二甲酸己二酸丁二醇酯複合材之抗菌效果極佳,其中又以聚苯胺(聚合物)添加量為9 wt%時為最佳比例。當聚苯胺(聚合物)添加含量超過此數值時,就會逐漸出現團聚現象並降低了複合材的相容性,進而影響其機械、光學及熱性質。

In this study, Polyaniline (PANI) containing composites comprising of Poly(butylene adipate-co-terephthalate) (PBAT) or acrylic acid-grafted PBAT (PBAT-g-AA/PANI) were prepared using a melt-blending process and the properties of composite were investigated. Composites containing exhibited noticeably enhanced compatibility as a result of amide group formation between the carboxyl groups of PBAT-g-AA and amino groups on PANI. The composites were characterized chemically by Fourier transform infrared spectrometry (FTIR) and 13C nuclear magnetic resonance (NMR) and optically using ultraviolet-visible spectroscopy (UV). The structure, crystallinity, and thermal stability were examined by nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC). The electrical conductivity, mechanical and morphological properties of the composites were also evaluated by resistance tester, Cyclic Voltameter, instron tensile testing machine and scanning electron microscope (SEM). Escherichia coli (BCRC 10239) was chosen as the standard bacterium for determining the antibacterial properties of the composite materials.
According to the results, PBAT-g-AA/PANI composites showed markedly enhanced electrical and mechanical properties due to the carboxyl groups of acrylic acid and amino groups of PANI allowing the formation of stronger chemical bonds (amide group). On the other hand, the electrical conductivity of PBAT-g-AA/PANI composites were enhanced with increasing PANI content. The decrease in electrical resistivity of PBAT-g-AA/PANI composites were due to the conductivity of PANI. Finally, the antibacterial activity of PBAT-g-AA/PANI composites were enhanced with increasing PANI content. The optimal proportion of PANI in the composites was 9 wt%. In excess of this amount, compatibility, mechanical, optical, and thermal properties were compromised.

摘要 I
目錄 V
圖目錄 IX
表目錄 XIII
第一章 緒論 1
1-1 前言 1
1-2 研究目的 4
2-1 高分子材料 6
2-2 導電高分子簡介 7
2-2-1 導電高分子起源與發展 7
2-2-2 導電性高分子的種類 9
2-2-3 導電原理 11
2-2-4 導電高分子的摻雜種類 15
2-2-5 導電高分子的應用 17
2-3 聚苯胺簡介 20
2-3-1 聚苯胺的緣起 20
2-3-2聚苯胺的合成方法 22
2-3-3聚苯胺化學結構與摻雜反應 23
2-4有機導電性高分子複合材料之介紹 26
2-5聚對苯二甲酸己二酸丁二醇酯 27
2-6 抗菌材料之相關研究 29
2-7 聚苯胺近年來的研究趨勢 31
第三章 實驗材料與步驟 33
3-1 實驗材料 33
3-2實驗儀器 35
3-3 實驗流程 40
3-3-1 第一部份 摻雜聚苯胺之合成流程圖 40
3-3-2第二部份PBAT/PANI、PBAT-g-AA/PANI複合材料實驗流程圖 41
3-3-3 抗菌測試示意圖 42
3-4實驗步驟 44
3-4-1 聚苯胺之製備 44
3-4-2 PBAT-g-AA製備 44
3-4-3 PBAT/PANI與PBAT-g-AA/PANI合膠製備 45
3-5 材料分析與鑑定 47
3-5-1傅立葉轉換紅外線光譜儀 47
3-5-2 固態-NMR成份分析 47
3-5-3分光光度計/雙光束紫外光分析(UV-VIS) 48
3-5-4 微差掃描熱(DSC)分析 48
3-5-5 熱重分析儀(TGA)分析 49
3-5-6 掃瞄式電子顯微鏡(SEM)觀測 50
3-5-7 拉伸試驗 50
3-5-8導電度測試分析 51
3-5-9 電化學交流阻抗頻譜分析儀 51
3-5-10 抗菌試驗 53
第四章 結果與討論 56
4-1 PBAT-g-AA/PANI之FTIR鑑定 56
4-2 PBAT-g-AA/PANI 之固態13C NMR 鑑定 58
4-3 PBAT-g-AA/PANI之分散性與UV-VIS分析 60
4-4 PBAT-g-AA/PANI之熱學性質分析 64
4-5 PBAT-g-AA/PANI之複合材表面形態 (SEM) 72
4-6 PBAT-g-AA/PANI之複合材之機械性質分析 75
4-7 電性能分析 79
4-7-1 電阻值測試 79
4-7-2 電化學特性分析 80
4-8 複合材料的抗菌性能 88
第五章 結論 95
第六章 參考文獻 96


1.王宗雄, “導電高分子聚苯胺之簡介及其應用,”工業材料雜誌,2000,175,165-175.
2.馬寧元, “導電高分子及其工業應用,”化工資訊與商情,2007,53,70-71.
3.何國賢、謝達華, “導電性塑膠簡介及應用,”塑膠資訊,1997,12,28-P35.
4.吳知行、楊乾信, ”苯胺的電化學聚合,”化工,1997,44(2).
5.Zhang, Z., Wan, M., “Composite films of nanostructured polyaniline with poly(vinyl alcohol) ,” Synthetic Metals,2002,128,83-39.
6.MacDiarmid, A. G., Epstein, A. J., “Secondary doping in polyaniline,” Synthetic Metals,1995,69,85-92.
7.許棟材, “導電塑膠的應用與市場趨勢,”塑膠資訊,1996,8,34.
8.何國賢、謝達華, “本質型導電高分子在奈米科技上的應用,”工業材料雜誌, 2002,185,150-158.
9.Yue, J., Epstein, A. J., “XPS Study of Self-Doped Conducting Polyaniline and Parent Study,” Macromolecules,1991,24,4441-4445.
10.Varma, I. K., Gupta, G., Sidhu,C.S., “Intrinsically Conducting Polymer Blends,” Macromoecularl Symposia,2001,164,401-410.
11.Roncali, J., “Conjugated Poiy(th1ophenes):Synthesis Functionalizatlon and Applications,” Chem Rev,1992,92,711-738.
12.Zhai, L., McCullough, R. D.,“Layer-by-Layer Assembly of Polythiophene,” Advanced Materials,2002,14,901-905.
13.Garnier, F., Tourillon, G., Gazard, M., Dubois, J. C., Electroanal, J., “Electrooptical Properties of Thin Films of Polyheterocycles,” Chem,1983,148,299.
14.Oh, K. W., Park, h. j., kim, S. H., “Electrical Property and Stability of Electrochemically Synthesized Polypyrrole Films,” ournal of Applied Polymer Science,2004,91,3659-3666.
15.Pandey, S. S., Annapoorni, s., Malhocra, B. D., “Synthesis and Characterization of Poly(aniline-co-anisidine) ; A Processable Conducting Copolymer,” Macromolecules,1993,26,3190-3193.
16.Green, A. G., Woodhead, A. E., “CCXLII-Aniline-black and allied compounds,” J Chem Soc Trans,1910,97,2388-2403.
17.Martin, C. F., Zhou, Y., “A Regularized Solution to The Birkhoff Interpolation Problem,” Institut Mittag Leffler,2000,10.
18.林建中, “高分子材料初版,”新文京開發出版有限公司,2000.
19.劉士榮, “高分子流變學,”滄海書局,2005.
20.戈進杰, “生物降解高分子材料,”化學工業出版社,2002,1-7.
21.Darras, O., Duckett, R. A., Hine, P. J., Ward, I. M., “Anisotropic elasticity of oriented polyethylene materials,” Composites Science and Technology,1995,55,131-138.
22.Koji, I., Kanno, H., “Novel synthesis and characterization of cyclic polystyrenes,” Polymer,1996,37,1487-1492.
23.Silvestri, R., Sgarzi, P., “Miscibility of polypropylenes of different stereoregularity,”Polymer,1998,39,5871-5876.
24.Kenneth, E., Gonsalves., Perminus, M., Mungara., “Synthesis and Properties of Degradable Polyamides and Related Polymers,”Trends in Polymer Science,1996,4,25-31.
25.謝俊雄, “工程塑膠,”文京圖書有限公司,1983.
26.Kumar, D., Sharma, R. C., “Advances in conductive polymers,”Eur Polym J,1998,34,1053-1060.
27.Seymour, R. B., “Structure-property relationships in polymers,”Plenum Press,1984,13,232.
28.Chen, S. A., Lin, L. C., “Polyaniline Doped by the New Class of Dopant Ionic Salt : Structure and roperties,” Macromolecules,1995,28,1239-1245.
29.Shirakawa, H., Lousi, E. J., MacDiarmid, A. G., Chiang, C. K., Heeger, A. J, “Synthesis of Electrically Conducting Organic Polymers:Halogen Derivatives of Polyacetylene,(CH)x,”Journal of the Chemical Society Chemical Communications,1977,16,578-580.
30.Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Burns, P . L., Holmes, A. B., “Light emitting diodes based on conjugated polymers,”Nature,1990,347,539-541.
31.Susan, K., VanderKam, E. S., Gawalt, J. S., Bocarsly, A. B., “Electrochemically Active Surface Zirconium Complexes on Indium Tin Oxide,” Langmuir,1999,15,6598-6600.
32.Wessling, B., “Dispersion hypothesis and non-equilibrium Thermodynamics:key elements for a materials scince of conductive polymers.A key to understanding polymer blends or other multiphase polymer systems,”Synthetic Metals,1991,4,119-149.
33.Negi, Y. S., Adhyapak, P. V., “Development in Polyaniline Conducting Polymers,”Polymer Reviews,2002,42,35-53.
34.Heeger, A. J., “Semiconducting and Metallic Polymers:The Fourth Generation of Polymeric Materials(Nobel Lecture,”Chem Int Ed., 2001,40,2591-2611.
35.李宛芸, ”Study of the characteristics of In-situ polymerization of aniline hydrochloride/polyacrylic acid solution,”全國碩博士論文,2010.
36.Skothrim, T. A., “Handbook of Conducting Polymers,”Marcel Dekker, 1986,2,1195.
37.張豐志, “高分子摻合隨談,”塑膠資訊,1997,12,9-13.
38.Nigrey, P. J., Macinnes, D. F., Electrochem, J., “Lightweight Rechargeable Storage Batteries Using Polyacetylene,(CH)X as the Cathode-Active Cathode-Active Material,”J Electrochem soc,1981,128,1651-1654.
39.Aldissi, M., “Inherently Conducting Polymers,”Energy Citations Database,1989,10,40.
40.Chiang, C. K., Rark, Y. W., Heeer, A. J., Shirakawa, H., Louis, E. J., Gau, S. C., MacDiarmid, A. G., “Electrical Conductivity in Doped Polyacetylene,”Phys Rev,1977,39,1098-1101.
41.Tlarke, T. C., Krounbi, M. T., Lee, V. Y., “Photoinitiated doping of polyacetylene ,”J Chem Soc,1981,8,384-385.
42.陳泓宇, “Studies on Blend of conductive Polyaniline/Sulfonated Polyurethanes,”全國碩博士論文,2002.
43.Ohtani, A., Abe, M., Ezoe, M., Doi, T., Miyata, T., Miyake, A., “Synthesis and Properties of High-Molecular-Weight Soluble Polyaniline and Its Application to the 4MB-Capacity Barium Ferrite Floppy Disk's Antistatic Coating,”Synthetic Metals, 1993,55,3696-3701.
44.Mohilner, D. M., Adams, R. N., Argersinger, W. J., “Investigation of the Kinetics and Mechanism of the Anodic Oxidation of Aniline in Aqueous Sulfuric Acid Solution at a Platinum Electrode,”Journal of the American Chemical Society,1962,84,3618-3662
45.MacDiarmid, A. G., Chiang, J. C., Halpern, M., Huang, W. S., Mu, S. L., Wu, S. W., Nanaxakkara, L. D., Yaniger, S., “Polyaniline: Interconversion of Metallic and Insulating Forms,” Mol Cryst Liq Cryst,1985,121,173-180.
46.MacDiarmid, A. G., Epstein, A. J., “Polyanilines : a novel class of conducting polymers,”Faraday Discuss Chem Soc,1989,88,317-332.
47.Wawzonek, S., MacIntyre, T. W., “Electrolytic Preparation of Azobenzenes,”J Electrochem Soc,1972,119,1350.
48.Bacon, J., Adams, R. N., “Anodic Oxidations of Aromatic Amines III Substituted Anilines in Aqueous Media,”J Am Chem Soc,1968,90,6596-6599.
49.Mohilner, D. M., Adams, R. N., Argersinger, W. J., “Investigation of the Kinetics and Mechanism of the Anodic Oxidation of Aniline inAqueous Sulfuric Acid Solution at a Platinum Electrode,”J A Chem Soc,1962,84,3618-3622.
50.Cox, R. A., Buncel, E., “In The Chemistry of Hydrazo, Azo and Azoxy Groups,”S Patel Ed,1975,2,775.
51.陳進來, “有機/無機混成材製備及其對織物機能化加工應用研究,”全國碩博士論文,2006.
52.Saegusa, T., “Organic-inorganic polymers hybrids,”Pure and Applied Chemistry,1995,67,1965-1970.
53.Huang, S. W., Neoh, K. G., Shih, C. W., Lim, D. S., Kang, E. T, Han, H. S., Tan, K. L., “Synthesis characterization and catalytic properties of palladium-containing electroactive polymers,”Synthetic Metals,1998,96,117-122.
54.Carothers, W. H., Hill, J. W., “Studies of polymerization and ring formation. XV Artificial fibers from synthetic linear condensation superpolymers,”Journal of the American Chemical Society,1932, 54,1579-1587.
55.Whinfield, J. R., JT, D., “Br Patent 578 079 1941,”US Patent,1949,2,319.
56.Schick, C., Donth, E., “Characteristic length of glass transition:experimental evidence,”Physica Scripta,1991,43,423.
57.Cheng, S. Z. D, Pan, R., Wunderlich, B., “Thermal analysis of poly(butylene terephthalate) for heat capacity rigid-amorphous content and transition behavior,”Macromolecular Chemistry and Physics, 1988,189,2443-2458.
58.Ko, S. w., Hong, M. K., Park, B. J., Gupta, R. K., Choi, H. J., Bhattacharya, S. N., “Morphological and rheological characterization of multi-walled carbon nanotube/PLA/PBAT blend nanocomposites,”Polymer Bulletin,2009,63,125-134.
59.Pranamuda, H., Tokiwa, Y., Tanaka, H., “Physical properties and biodegradability of blends containing poly(ε-caprolactone) and tropical starches,”Journal of Environmental Polymer Degradation,1996,4,1-7.
60.Witt, U., Einig, T., Yamamoto, M., Kleeberg, I., Deckwer, W. D., Muller, R. J., “Biodegradation of aliphatic-aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates,”Chemosphere, 2001,44,289-299.
61.Cranston, E., Kawada, J., Raymond, S., Morin, F. G., Marchessault, R. H., “Cocrystallization Model for Synthetic Biodegradable Poly(butylene adipate-co-butylene terephthalate),”Biomacrmolecles,2003,4, 995-999.
62.Kuwabara, K., Gan, Z., Nakamura, T., Abe, H., Doi, Y., “Crystalline/Amorphous Phase Structure and Molecular Mobility of Biodegradable Poly(butylene adipate-co-butylene terephthalate) and Related Polyesters,”Biomacromolecules,2002,3,390-396.
63.Digabel, F. L., Boquillon, N., Dole, P., Monties, B., Averous, L., “Properties of thermoplastic composites based on wheat-straw lignocellulosic fillers,”Journal of Applied Polymer Science,2004,93,428-436.
64.Wang, H., Qiao, X., Wang, X., Chen, J., Xiong, J., Cao, Y., “Influence of high temperature on antibacterial property of silver-loaded zeolite,”Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society,2006,34,171-174.
65.呂晃志、蔡宜壽, “銀系無機抗菌材料的開發(上),”化工資訊與商,2007,44,38-45.
66.呂晃志、蔡宜壽, “銀系無機抗菌材料的開發(下),”化工資訊與商,2007,44,56-62.
67.Stoimenov, P. K., Klinger, R. L., Marchin, G. L., Klabunde, K. J., “Metal oxide nanoparticles as bactericidal agents,”Langmuir,2007,18,679-686.
68.Radeti, M., Ili, V., Vodnik, V., Dimitrijevi, S., Jovan, P., Scaronaponji, Z., Nedeljkovi, J. M., “Antibacterial effect of silver nanoparticles deposited on corona-treated polyester and polyamide fabrics,”Polymers for Advanced Technologies,2008,19,1816-1821.
69.Ma, Y., Zhou, T., Zhao, C., “Preparation of chitosan-nylon-6 blended membranes containing silver ions as antibacterial materials,” Carbohydrate Research,2008,343,230-237.
70.Stejskal, J., Trchova, M., Ananieva, I. A., Janca, J., Prokes, J., Fedorova, S., Sapurina, I., “Poly(aniline-co-pyrrole) : powders Films and colloids Thermophoretic mobility of colloidal particles,”Synthetic Metals,2004.146,29–36.
71.Han, D., Chu, Y., Yang, L., Liu, Y., Lv, Z., “Reversed micelle polymerization:a new route for the synthesis of DBSA-polyaniline nanoparticles,”Colloids and surfaces A:Physicochem Eng Aspects, 2005,259, 179-187.
72.Sung, H. B., Choi, S. U., Jang, G. H., Park, S. Y., “Novel approach toenhance the dispersion stability of ER fluids based on hollow polyaniline sphere particle,”Colloids and Surfaces A: Physicochem Eng,2006,274,37-42.
73.Castillo-Castro, T. D., Castillo-Ortega, M. M., Villarreal, I., Brown, F., Grijalva, H., Pérez-Tello, M., Nuño-Donlucas, S. M., Puig, J. E., “Synthesis and characterization of composites of DBSA-doped polyaniline and polystyrene-based ionomers,”Composites: Part A,2007 38,639-645.
74.Zhang, Y., Li, Q., Cui, H., Zhai, J., “Removal of phenols from the aqueous solutions based on their electrochemical polymerization on the polyaniline electrode,”Electrochimica Acta,2010,55,7219-7224.
75.Raquez, J. M., Nabar, Y., Narayan, R., Dubois, P., “In situ compatibilization of maleated thermoplastic starch/polyester melt-blends by reactive extrusion,”Polymer Engineering and Science,2008,48,1747-1754.
76.Raquez, JM., Nabar, Y., Narayan, R., Dubois, P., “In situ compatibilization of maleated thermoplastic starch/polyester melt-blends byreactive extrusion,”Polym Eng Sci,2008,48,1747–1754.
77.Grigoras, M., Chitanu, G. C, Popescu, I., Pelin, I. M., Rimbu, G. A., “Polyaniline/Maleic Acid Copolymers Composites:Synthesis and Characterization,”Macromol Symp, 2008,263,30–37.
78.Athawale, A. A., Kulkarni, M. V., Chabukswar, V. V., “Studies on chemically synthesized soluble acrylic acid doped polyaniline,”Materials Chemistry and Physics,2002,73,106-110.
79.Shi, X. Q., Aimi, K., Ito, H., Ando, S., Kikutani, T., “Characterization on mixed-crystal structure of poly(butylene terephthalate/succinate/adipate) biodegradable copolymer fibers,”Polymer,2005,46,751–760.
80.Wu, C. S., “Antibacterial and static dissipating composites of poly(butylene adipate-co-terephthalate) and multi-walled carbon nanotubes,” Carbon,2009,47,3091-3098.
81.Wang, Y., Jing, X., “Preparation of polystyrene/polyanilinecore/shell structured particles and their epoxy-based conductive composites,”Polymer International,2007,56,126-131.
82.Jeong, S. I., Jun, I. D., Choi, M. J., Nho, Y. C., Lee, Y. M., Shin, H., “Development of Electroactive and Elastic Nanofibers that contain Polyaniline and Poly(L-lactide-co-e-caprolactone) for the Control of Cell Adhesion,”Macromol Biosci,2008,8,627–637.
83.Gok, A., Omastova, M., Proken.Jan., “Synthesis and characterization of red mud/polyaniline composites:Electrical properties and thermal stability,”European Polymer Journal, 2007,43,2471–2480.
84.Kumar, M., Mohanty, S., Nayak, S. K., Parvaiz, M. R., “Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites,”Bioresource Technology,2010,101,8406-8415.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top