跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/16 19:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何育昇
研究生(外文):Yu-Sheng Ho
論文名稱:應用於IEEE 802.16m之動態資源排程演算法
論文名稱(外文):Dynamic Resource Scheduling Algorithm in IEEE 802.16m Networks
指導教授:朱國志朱國志引用關係
指導教授(外文):Kuo-Chih Chu
學位類別:碩士
校院名稱:龍華科技大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:91
中文關鍵詞:Scheduling AlogorithmBWAIEEE 802.16mQoSFrequency Reuse
外文關鍵詞:Scheduling AlogorithmBWAIEEE 802.16mQoSFrequency Reuse
相關次數:
  • 被引用被引用:0
  • 點閱點閱:102
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
  無線網路已經成為人們生活中不可或缺的一部份,而無線網路的應用更是日益月新,也因為如此,人們對於無線網路的需求更是越來越高。但是,如何在眾多需要被服務的應用中,讓各個使用者都能夠有好的服務感受,支援服務品質將是一件重要的事情。IEEE 802.16m支援了服務品質技術,其可以讓各式各樣的應用對應到預先定義的類別中。如果有個好的排程演算法,依照這些類別的相關參數來分配頻寬及傳送時機,那麼各式各樣的應用都能得到滿意的服務品質。
  然而在IEEE 802.16m中,並沒有定義排程演算法,因此在本篇論文中,我們依照此IEEE 802.16m的標準,設計了一個排程演算法。目的在於讓各式各樣的應用,都能得到適當的服務品質,讓高優先權的應用不受負載高時的影響、讓即時性的資料有即時的傳送時機、也讓低優先權的應用能有適當的頻寬可以傳送。接著我們模擬這個排程演算法並比較其他演算法。最後由分析可得知,本論文所提出之演算法在延遲時間及吞吐量上,都比其他演算法來的好。
  Wireless Internet has become an integral part of human life, so people demand for wireless networks is increasing. Therefore, how to make all users have good service experience will be an important issue to be solved. IEEE 802.16m has a key technology: quality of service. Its main function is to make a wide range of applications satisfied with the quality.
  In this paper, we follow this technique to design a novel dynamic scheduling algorithm. The purpose is to allow a wide range of applications to have the appropriate quality of service, real-time data to have real time transmission opportunity, high-priority to resist the load, low-priority applications to have adequate bandwidth for transmission. Next, we simulate the scheduling algorithm and compare it with other algorithms. Finally, the analysis can be informed that the proposed algorithm in this thesis can putperform other algorithm in the delay time and throughput.
摘要 i
ABSTRACT ii
誌謝 iii
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 IEEE 802.16 3
1.3 研究動機 10
1.4 論文架構 11
第二章 IEEE 802.16m介紹 13
2.1 IEEE 802.16m基本需求 14
2.2 IEEE 802.16m系統佈署需求 15
2.3 IEEE 802.16m系統架構 16
2.3.1 IEEE 802.16m協定堆疊模組 16
2.3.2 IEEE 802.16m協定架構 17
2.3.3 IEEE 802.16m物理層介紹 23
2.3.3.1 IEEE 802.16m訊框架構 23
2.3.3.2 IEEE 802.16m多天線系統之波束成形 23
2.3.4 IEEE 802.16m媒體存取層介紹 25
2.3.4.1 定址 25
2.3.4.2 QoS 26
2.3.5 IEEE 802.16m AMS狀態圖 33
2.4 相關工作 35
第三章 HABA演算法 37
3.1 系統介紹 37
3.2 系統模組 38
3.2.1 允入控制 39
3.2.2 HABA排程演算法 42
第四章 模擬結果與分析 54
4.1 模擬環境 54
4.2 效能分析 58
4.2.1 頻率使用狀況 58
4.2.2 HABA演算法 60
4.2.2.1 各QoS類別使用HABA演算法產生的頻寬狀態 60
4.2.2.2 各QoS類別使用HABA演算法產生的延遲時間 65
4.2.3 HABA、FIFS、EDF及WFQ比較 73
4.2.3.1 各演算法在各QoS類別頻寬的使用狀態 73
4.2.3.2 各演算法在各QoS類別所產生的延遲時間 79
第五章 結論 86
參考文獻 87
[1]IEEE Std. 802.11 “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications,” Feb. 2011.
[2]IEEE Std. 802.16-2009 “Air Interface for Broadband Wireless Access Systems,” May 2009.
[3]M. Alasti, B. Neekzad, Jie Hui and R. Vannithamby, “Quality of service in WiMAX and LTE networks,” IEEE Communications Magazine, v.48 issue.5, May 2010, pp.104-111.
[4]C. Eklund, R. B. Marks, K. L. Stanwood and S. Wang, “IEEE standard 802.16: a technical overview of the WirelessMANTM air interface for broadband wireless access, ” IEEE Communications Magazine, v.40 issue.6, Jun. 2002, pp.98-107.
[5]IEEE Std. 802.16-2004 “Air Interface for Fixed Broadband Wireless Access Systems,” 2004.
[6]IEEE Std. 802.16-2006 “Air Interface for Fixed and Mobile Broadband Wireless Access Systems,” 2006.
[7]IEEE Std. 802.16-2001 “Local and Metropolitan Area Networks Coexistence of Fixed Broadband Wireless Access Systems,” 2001.
[8]IEEE Std. 802.16-2002 “Air Interface for Fixed Broadband Wireless Access Systems,” 2002.
[9]M. Lai, K. Etemad, WiMAX Technology and Network Evolution, 1st edition, IEEE, 2011, pp.17-59.
[10]M. Lai, K. Etemad, WiMAX Technology and Network Evolution, 1st edition, IEEE, 2011, pp.61-71.
[11]P. Chaudhury, W. Mohr and S. Onoe, “The 3GPP proposal for IMT-2000,” IEEE Communications Magazine, v.38 issue.12, Aug. 2002, pp.72-81.
[12]IEEE Std. P802.16m/D9 “Air Interface for Broadband Wireless Access Systems,” Oct. 2010.
[13]M. Lai, K. Etemad, WiMAX Technology and Network Evolution, 1st ed., IEEE, 2011, pp.147-177
[14]IEEE Std. 802.16j-2009 “Air Interface for Broadband Wireless Access Systems Amendment 1: Multiple Relay Specification,” Jun. 2009.
[15]W. Mohr, J.F. Monserrat, A. Osseiran and M. Werner, “IMT-Advancedd and next-generation mobile networks, ” IEEE Communications Magazine, v.49 issue.2, Feb. 2011, pp.82-83.
[16]I. Papapanagiotou, D. Toumpakaris, L. Jungwon and M. Devetsikiotis, “A survey on next generation mobile WiMAX networks: objectives, features and technical challenges,” IEEE Communications Surveys & Tutorials, v.11 issue.4, Fourth Quarter 2009, pp.3-18.
[17]S. Ahmadi, “An Overview of Next-Generation Mobile WiMAX Technology,” IEEE Communications Magazine, v.47 issue.6, Jun. 2009, pp.84-98.
[18]A. Molisch, Wireless Communications, 1st edition, IEEE, 2011, pp.665-698.
[19]J. Govil, “4G: Functionalities Development and an Analysis of Mobile Wireless Grid,” Proceedings of IEEE ICETET '08, Nagpur, Maharashtra, Jul. 2008, pp.270-275.
[20]P.M. McKenna, “Report on the International Meetings of the ITU-R Working Parties 3J, 3Kq 3L, and 3M of Radiocommunication Study Group 3,” IEEE Antennas and Propagation Magazine, v.47 issue.4, Aug. 2005, pp.131-135.
[21]R. Y. Kim, I. Jung, X. Yang, and C.C. Chou “Advanced handover schemes in IMT-Advancedd systems,” IEEE Communications Magazine, v.48 issue.8, Mar. 2010, pp.78-85.
[22]S. L. Shrestha, N. O. Song, and S. Chong “Seamless realtime traffic handover policy for IEEE 802.16m mobile WiMAX,” Proceedings of IEEE CISS '09, Baltimore, Jun. 2009, pp.252-257.
[23]B. Wolz, F. Nio, M. Muhleisen, and K. Klaggees “Coordination across base stations for effective control of space division multiple access enhanced IEEE 802.16m systems,” Proceedings of IEEE PIMRC '09, Tokyo, Apr. 2009, pp.375-379.
[24]T. Kim, and J.T. Lim, “Quality of service supporting downlink scheduling scheme in worldwide interoperability for microwave access wireless access systems,” IET Communications, v.4 issue.1, Jan. 2010, pp.32-38.
[25]S. T.Cheng, M. T. Hsieh, and B.F. Chen, “Fairness-based scheduling algorithm for time division duplex mode IEEE 802.16 broadband wireless access systems,” IET Communications, v.4 issue.9, Jun. 2010, pp.1065-1072.
[26]E. Liu, D. Wang, J. Liu, G. Shen and S. Jin, “Performance Evaluation of Bandwidth Allocation in 802.16j Mobile Multi-Hop Relay Networks,” Proceedings of IEEE 65th VTC2007-Spring, Dublin, Ireland, Apr. 2007, pp. 939-43.
[27]R. Fei, K. Yang, S. Ou, S. Zhong and L. Gao” A Utility-based Dynamic Bandwidth Allocation Algorithm with QoS Guarantee for IEEE 802.16j enabled Vehicular Networks,” Proceedings of IEEE SCALCOM–EMBEDDEDCOM '09, Dalian, China, Sept. 2009, pp.200-205.
[28]F.C. Ren, I.K. Fu and W.H. Sheen "Deployment and radio resource reuse in IEEE 802.16j multi-hop relay network in Manhattan-like environment," Proceedings of IEEE ICICS '07, Singapore, Dec. 2007, pp.1-5.
[29]D. Ghosh , A. Gupta and P. Mohapatra, “Scheduling in multihop WiMAX networks,” ACM SIGMOBILE Mobile Computing and Communications Review, v.12 n.2, Apr. 2008.
[30]H. Zeng and C. Zhu, ”System Design and Resource Allocation in 802.16j Multi-hop Relay Systems under the User Rate Fairness Constraint,” Proceedings of IEEE ICC '09, Dresden, Germany, Jun. 2009.
[31]B. Kwon, Y. Chang, and J. A. Copeland, "A network entry protocol and an OFDMA symbol allocation scheme for nontransparent relay stations in IEEE 802.16j MMR networks," Proceedings of IEEE MILCOM '08, Nov. 2008, pp.1-6.
[32]L. Wang, Y. Ji, and F. Liu, “A novel centralized resource scheduling scheme in OFDMA-based two-hop relay-enhanced cellular systems,” Proceedings of IEEE WIMOB, Oct. 2008, pp. 113–118.
[33]C.Y. Hong and A.C. Pang, “Link scheduling with QoS guarantee for wireless relay networks,” Proceedings of IEEE INFOCOM '09, Apr. 2009, pp. 2806–2810.
[34]D. Schultz, R. Pabst, and T. Irnich, “Multi-hop based radio network deployment for efficient broadband radio coverage,” Proceedings of WPMC, Yokosuka, Japan, 2003, pp. 377–381.
[35]T. Wu, G. Li, Y. Wang, J. Huang, X. Yu, and H. Tian, “Fairness-oriented scheduling with equilibrium for multihop relaying networks based on OFDMA,” Proceedings of IEEE VTC '08—Fall, Sep. 2008, pp. 1–5.
[36]M. Salem, A. Adinoyi, M. Rahman, H. Yanikomeroglu, D. Falconer and Y. D. Kim, “Fairness-aware radio resource management in downlink OFDMA cellular relay networks,” IEEE Transactions on Wireless Communications, v.9, n.5, May 2010, pp.1628-2639.
[37]H. W. Kuhn, “The Hungarian method for the assignment problem," Naval Research Logistic Quarterly, vol. 2, no. 1, pp. 83-97, 1955.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top