(3.236.214.19) 您好!臺灣時間:2021/05/09 22:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:卓昀劭
研究生(外文):Yun-Shao Cho
論文名稱:利用光激發光譜儀對非晶矽薄膜太陽能電池製程最佳化
論文名稱(外文):Optimization of amorphous silicon thin film solar cell processes by using optical emission spectroscopy
指導教授:陳家富陳家富引用關係連水養連水養引用關係
指導教授(外文):Chia-Fu ChenShui-Yang Lien
學位類別:碩士
校院名稱:明道大學
系所名稱:材料科學與工程學系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:97
中文關鍵詞:光激發光譜儀非晶矽薄膜電漿輔助化學氣相沉積矽基
外文關鍵詞:optical emission spectroscopyamorphous silicon filmsPlasma enhanced chemical vapor depositionthin film solar cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:375
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:61
  • 收藏至我的研究室書目清單書目收藏:1
本研究主要以光激發光譜儀(Optical Emission Spectrometer,OES)來檢測HF-PECVD(27.1 MHz)沉積非晶矽薄膜製程中電漿的自由基分佈與濃度,實驗中我們分別改變射頻功率(10-30 W)、氫氣流量(80-200 sccm)、電極與基板間距離(10 mm-30 mm)利用OES分析在不同製程參數下電漿中的SiH* (414 nm) 和H* (656 nm、722 nm 、772 nm)比例變化。由實驗結果發現,SiH*自由基與H*加總後SiH*所佔有比例越高時,將提升矽薄膜的沉積速率,而H*的比例推測與選擇性蝕刻有關,有助於帶走多於的懸浮鍵,因此可以控制氫含量達最佳化並採用傅立葉轉換紅外光譜儀(FTIR)進行驗證,利用矩陣式OES即時檢測方法分析電漿分佈穩定性,發現射頻功率10 w、氫氣流量160 sccm、電極與基板間距離 30 mm 時沉積非晶矽薄膜具有較高的H*比例以及較佳的電漿分佈穩定性,做為矽基薄膜太陽能電池結構中之本質層,元件效率可達9.1 %。
Radio-frequency (RF) Parallel plate reactors are commonly used for plasma-enhanced chemical vapor deposition (PECVD) of hydrogenated amorphous silicon (a-Si:H) thin films. Non-intrusive plasma diagnostics for industrial RF parallel-plate reactors can be useful for process optimization and monitoring, provided that their implementation is practical. In this study, the a-Si:H thin films have been deposited in a parallel-plate 27.1 MHz radio frequency (RF) plasma reactor fed with hydrogen and pure SiH4. The plasma characterization has been performed by optical emission spectrometry (OES) for the analysis of the emitting species SiH*(414nm) and H* (656 nm、722 nm 、772 nm) . The main features of the spectra correspond to the emission of SiH* and H* excited radicals, which directly come from dissociative excitation by electron collision processes with SiH4. The effect of the RF power (10-30 W) , the hydrogen flow from 120 sccm to 200 sccm, the electrode distance from 20 mm to 40 mm on the plasma phase composition and on the film growth rate has been investigated. The results showed the deposition rate, hydrogen content, and microstructural defect factor (R) of the a-Si:H films correlated with SiH* and H* radical intensities. The statistical film uniformity and efficiency of the a-Si:H thin film solar cells were also studied. It revealed a chemisorptions-based deposition model of the growth mechanism. Finally, the a-Si:H thin film solar cell with efficiency of 9.1 % have been obtained.
中文摘要 ..........................................................I
Abstract......................................................... II
致謝............................................................ III
總目錄............................................................IV
表目錄...........................................................VII
圖目錄............................................................IX
第一章 緒論......................................................1
1-1、前言..........................................................1
1-2、研究動機......................................................5
1-3、研究目的......................................................9
1-4、論文架構.....................................................10
第二章 文獻回顧.................................................11
2-1、太陽電池原理.................................................11
2-2、太陽電池等效電路.............................................13
2-3、太陽電池轉換效率.............................................15
2-4、電漿原理.................................................... 16
2-5、輝光放電.................................................... 18
2-6-1、矽基薄膜太陽電池-薄膜製備的方法............................18
2-6-2、矽基薄膜太陽電池-a-Si:H 氫化非晶矽薄膜說明................ 20
2-6-3、矽基薄膜太陽電池-原理與結構................................22
2-7、國外與本論文研究相關之文獻...................................26
第三章 實驗方法與步驟............................................ 29
3-2、沉積系統與薄膜製備.......................................... 33
3-2-1、超高頻電漿輔助化學氣相沉積 (VHF-PECVD) ....................33
3-2-2、薄膜製備過程.............................................. 35
3-2-3、PECVD腔體窺視孔定義........................................36
3-2-4、連續式多腔體濺鍍系統(In-line Sputter) .....................37
3-3、薄膜結構分析................................................ 40
3-3-1、膜厚量測 (α -step profiler) ..............................40
3-3-2、傅立葉轉換紅外光譜儀 ( Fourier-Transform Infrared ,FTIR)...40
3-4、元件 I-V 特性量測-太陽光能模擬器(Solar Simulator) .......... 43
3-5、矩陣式電漿分析...............................................44
3-5-1、光激發光譜儀介紹...........................................44
3-5-2矩陣式OES即時檢測系統設計....................................45
3-5-3、矩陣式OES即時檢測系統說明................................. 46
3-6、矩陣式OES電漿分析計算說明....................................47
3-6-1、薄膜沉積速率分析...........................................47
3-6-2、選擇性蝕刻趨勢分析.........................................48
3-6-3、矩陣式量測法...............................................48
3-6-4、水平量測法.................................................49
3-6-5、垂直量測法.................................................50
第四章 結果與討論.................................................51
4-1、改變不同功率沉積本質層分析...................................51
4-1-1、改變不同功率利用OES對薄膜沉積速率分析......................52
4-1-2、改變不同功率利用OES對選擇性蝕刻趨勢分析....................53
4-1-3、改變不同功率沉積本質層矩陣式OES分析........................55
4-1-4、改變不同功率沉積本質層矩陣式OES水平量測分析................60
4-1-5、改變不同功率沉積本質層矩陣式OES垂直量測分析................61
4-1-6、改變不同功率沉積本質層矩陣式OES量測分析....................62
4-2、改變不同H2流量沉積本質層分析.................................65
4-2-1、改變不同H2流量利用OES對薄膜沉積速率分析....................66
4-2-2、改變不同H2流量利用OES對選擇性蝕刻趨勢分析..................67
4-2-3、改變不同H2流量沉積本質層矩陣式OES分析......................68
4-2-4、改變不同H2流量沉積本質層矩陣式OES水平量測分析..............72
4-2-5、改變不同H2流量沉積本質層矩陣式OES垂直量測分析............. 73
4-2-6、改變不同H2流量沉積本質層矩陣式OES量測分析..................74
4-3、改變不同電極與基板間距離沉積本質層分析...................... 77
4-3-1、改變不同電極與基板間距離利用OES對薄膜沉積速率分析..........78
4-3-2、改變不同電極與基板間距離利用OES對選擇性蝕刻趨勢分..........79
4-3-3、改變不同電極與基板間距離沉積本質層矩陣式OES分析............80
4-3-4、改變不同電極與基板間距離沉積本質層矩陣式OES水平量測........85
4-3-5、改變不同電極與基板間距離沉積本質層矩陣式OES垂直量測........86
4-3-6、改變不同電極與基板間距離沉積本質層矩陣式OES量測分..........87
第五章 結論 ..................................................... 90
第六章 未來展望.................................................. 91
參考文獻......................................................... 92
個人基本資料......................................................96
[1] 黃惠良/蕭錫鍊/周明奇/林堅楊/江雨龍/曾百亨/李威儀/李世昌/林唯芳 太陽電池/五南圖書出版有限公司,2008。
[2] 莊嘉琛編譯,太陽能工程-太陽能電池篇,全華科技圖書股份限公司,2008。
[3] 王朝俊,窄能隙矽基材料(Si 1-x Ge x )製程技術材料分析及太陽電池應用,明道大學材料科學與工程學系碩士論文,民國九十八年六月。
[4] 楊學修,利用OES 光譜儀診斷作為電漿氮化閘極製程之氮濃度之應用,國立交通大學工學院專班半導體材料與製程設備組碩士論文,民國九十六年七月。
[5] 陳家富,電漿與薄膜製程技術手冊,民國九十四年九月。
[6] 張家豪,魏鴻文,翁政輝,柳克強,電漿源原理與應用之介紹,物理雙月刊,廿八卷二期,民國九十五年四月。
[7] 林揚士,高效率雙接面矽基薄膜太陽能電池製備與特性之研究,碩士論文,虎尾科技大學材料科學與綠色能源工程研究所,民國九十九年
[8] G.S. Chen, C.C. Lee, H. Niu, Welson Huang, Robert Jann, T. Schütte,“ Sputter deposition of titanium monoxide and dioxide thin films with controlled properties using optical emission spectroscopy” Thin Solid Films 516(2008) 8473–8478
[9] V.Cech, J. Studynka, B. Cechalova, J. Mistrik, J. Zemek, “Correlation between mechanical, optical and chemical properties of thin films deposited by PECVD” Surface & Coatings Technology 202 (2008) 5572–5575
[10] P. Leempoel, P. Descamps, T. Kervyn de Meerendré, J. Charliac, P. Roca i Cabarrocas, P. Bulkin, D. Daineka T.H. Dao J.P. Kleider, “Distributed electron cyclotron resonance plasma: A technology for large area deposition of device-quality a-Si:H at very high rate” Thin Solid Films 516 (2008) 6853–6857
[11] X.D. Zhang, F.R. Zhang, E. Amanatides, D. Mataras, Y. Zhao, “Effect of substrate bias on the plasma enhanced chemical vapor deposition of microcrystalline silicon thin films” Thin Solid Films 516 (2008) 6912–6918
[12] A. Parashar , Sushil Kumar , P.N. Dixit , Jhuma Gope , C.M.S. Rauthan , S.A. Hashmi, “High-pressure condition of SiH4+Ar+H2 plasma for deposition of hydrogenated nanocrystalline silicon film” Solar Energy Materials & Solar Cells 92 (2008) 1199– 1204
[13] T. Kilper, M.N. van den Donker, R. Carius, B. Rech, G. Bräuer, T. Repmann“ Process control of high rate microcrystalline silicon based solar cell deposition by optical emission spectroscopy” Thin Solid Films 516 (2008) 4633–4638
[14] H. Colder, P. Marie, F. Gourbilleau,” The silicon–silicon oxide multilayers utilization as intrinsic layer on pin solar cells”Thin Solid Films 516 (2008) 6930–6933
[15]M. Gula´s , F. Le Normand , P.Veis, ” Gas phase kinetic and optical emission spectroscopy studies in plasma-enhanced hot filament catalytic CVD production ofcarbon nanotubes”, Applied Surface Science 255 (2009) 5177–5180
[16] Jatindra K. Rath, Yanchao Liu , Monica Brinza , Arjan Verkerk , Caspar van Bommel,A.Borreman, Ruud E.I. Schropp, “Recent advances in very high frequency plasma enhanced CVD process for the fabrication o thin f film silicon solar cells” Thin Solid Films 517 (2009) 4758–471
[17] J.P. Kleider, R. Chouffot, A.S. Gudovskikh, P. Roca i Cabarrocas, M. Labrune,J.Ribeyron, R. Brüggemann “Electronic and structural properties of the amorphous/crystalline silicon interface” Thin Solid Films 517 (2009) 6386–6391
[18] Espedito Vassallo, Anna Cremona, Francesco Ghezzi, Daria Ricci, Characterization by optical emission spectroscopy of an oxygen plasma used for improving PET wettability” Istituto di Fisica del Plasma – Consiglio Nazionale delle Ricerche (CNR), via R. Cozzi 53, 20125 Milano, Italy”
[19] Youn J. Kim , Yoon S. Choi, Kyung S. Shin, Sung H. Cho, In S. Choi, Jeon G. Han, “High deposition rate microcrystalline silicon films prepared by magnetic mirror assisted RF-PECVD” Current Applied Physics 10 (2010) 354–356
[20] Yongsup Yun, Takanori Yoshida , Norifumi Shimazu , Naoki Nanba, Yasushi Inoue ,Nagahiro Saito , Osamu Takai “Influence of Ar gas flow rate in organosilicon plasma for the fabrication of SiO:CH thin films by PECVD method” Surface & Coatings Technology 202 (2008) 5259–5261
[21] Huidong Yanga, Chunya Wu, Junkai Huang, Ruiqin Ding, Ying Zhao Xinhua Geng, Shaozhen Xiong,“Optical emission spectroscopy investigation on very high frequency plasma and its glow discharge mechanism during the microcrystalline silicon deposition” Thin Solid Films 472 (2005) 125– 129
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔