(3.236.122.9) 您好!臺灣時間:2021/05/09 07:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:楊東翰
研究生(外文):Tung-han Yang
論文名稱:陰極電弧沉積TiSiN/CrAlN多層膜之微結構、機械特性、高溫氧化行為研究
論文名稱(外文):Mechanical properties and high temperature oxidation behaviors of TiSiN/CrAlN films synthesized by a cathodic arc deposition process
指導教授:張銀祐
指導教授(外文):Yin-yu Chang
學位類別:碩士
校院名稱:明道大學
系所名稱:材料科學與工程學系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:100
中文關鍵詞:硬膜陰極電弧多層膜高溫氧化行為
外文關鍵詞:High temperature oxidation behaviorsCathodic arc deposition processMultilayerd
相關次數:
  • 被引用被引用:3
  • 點閱點閱:542
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:121
  • 收藏至我的研究室書目清單書目收藏:0
本實驗使用陰極電弧沉積系統製備TiSiN/CrAlN奈米多層膜,探討其微結構、機械性質及高溫氧化行為。TiSiN/CrAlN奈米多層膜的製備使用Ti80Si20、Cr50 Al50合金靶,並使用附著力較好的CrN作為介層。製程使用三種靶電流比例(Ti80Si20∕Al70Cr30) 90/50、70/70、50/90,以及每種靶電流都使用三種製程轉速4 rpm、5 rpm、6.7 rpm進行比較,分別得到不同成分比例與不同週期厚度的TiSiN/CrAlN薄膜。在高溫氧化實驗實驗中,將薄膜置於空氣氣氛中進行800℃持溫2小時之高溫氧化處理,討論不同成分比例與不同週期厚度對於高溫氧化行為的影響。分析儀器使用場發射電子顯微鏡、高解析穿透式電子顯微鏡以及X光繞射儀做微結構分析及晶相分析,以X光光電子能譜儀、能量分散光譜儀對薄膜組成、化學組態、元素縱深分布進行分析。
研究結果顯示TiSiN/CrAlN薄膜中4rpm-TiSi/CrAl-1.8薄膜具有最高的硬度值35-45Gpa,比單層TiSiN略高,多層結構薄膜之晶粒尺寸也比單層薄膜來的小,顯示多層結構具有晶粒細化的效果,進而提升薄膜硬度;在抗高溫氧化方面TiSi/CrAl-0.56薄膜具有最好的抗氧化能力,XPS縱深成分分析顯示TiSi/CrAl-0.56薄膜的氧化深度只有100nm,而單層TiSiN則高達500nm的氧化深度。由於CrAlN的氧化物具有阻擋氧原子向薄膜擴散的能力,因此高CrAl含量的TiSi/CrAl-0.56薄膜具有最好的抗高溫氧化能力。
Multilayerd TiSiN/CrAlN were synthesized by using a cathodic arc deposition system, and the structural, mechanical properties and high temperature oxidation behaviors were studied. For the high temperature oxidation test, the film were annealed 800℃ in air for 2 hours. In this study, Ti80Si20 and Cr50Al50 alloy targets are used for the deposition multilayered TiSiN/CrAlN thin films.The deposition of CrN under the TiSiN/CrAlN is used as the interlayer to enhance better adhesion. Different cathode current ratios (Ti80Si20/Al70Cr30) of 90/50、70/70、50/90 and different rotational speed 4 rpm、5 rpm、6.7 rpm are adoped to depsoite films with different composition and periodic thicknesses.
In the study, field emission scanning electron microscope, high resolution electron microscope and glancing angle X-ray diffraction were used to characterize the microstructure and phase identification of the as-deposited and annealed films. The composition, chemical bonding and depth profile were evaluated by X-ray photoelectron spectroscopy and energy dispersive spectrometer.
The 4rpm-TiSi/CrAl-1.8 film has the highest hardness value of 35-45Gpa, slightly higher than the single TiSiN film. The multi-layer structure can reduce the grain size, lead to improve the film hardness; For the high-temperature oxidation resistance, TiSi/CrAl-0.56 film has the best high temperature oxidation resistance, the XPS depth composition analysis showed that TiSi/CrAl-0.56 film has the lowest oxide thickness of 100nm, while the single TiSiN oxide thickness is to 500nm. TiSi/CrAl-0.56 film with the highest CrAl content has the best high temperature oxidation resistance because the CrAlN oxide layer can prevent oxygen diffusion into the film.
總目錄
致謝.......................................................................................................................I
摘要................................................................................................................... III
Abstract................................................................................................................V
總目錄................................................................................................................VI
圖目錄.............................................................................................................VIII
表目錄.................................................................................................................X
第一章 前言........................................................................................................1
第二章 文獻回顧................................................................................................3
2.1 薄膜沉積技術.....................................................................................3
2.1.1 物理氣相沉積(PVD) ...............................................................5
2.1.2 化學氣相沉積(CVD) ..............................................................5
2.2 陰極電弧沉積技術.............................................................................6
2.2.1 陰極電弧沉積技術原理..........................................................7
2.2.2 陰極電弧微粒的產生..............................................................9
2.2.3 薄膜成長機制........................................................................11
2.2.4 薄膜結構................................................................................13
2.2.5 離子轟擊................................................................................16
2.2.6 薄膜品質的控制....................................................................17
2.3 硬膜介紹...........................................................................................19
2.3.1 薄膜硬度提升機制................................................................19
2.3.2 薄膜介紹(TiSiN) ...................................................................23
2.3.3 薄膜介紹(CrAlN) ..................................................................24
第三章 實驗方法..............................................................................................25
3.1 實驗目的...........................................................................................25
3.2 薄膜設計與製備...............................................................................27
3.3 高溫氧化實驗...................................................................................32
3.4 薄膜分析與量測...............................................................................33
3.4.1 薄膜微結構鑑定與分析測....................................................33
3.4.2 薄膜微結構鑑定與分析測....................................................34
3.4.3 X光光電子能譜儀.................................................................35
3.4.4 奈米壓痕..................................................................................37
3.4.5 穿透式電子顯微鏡(TEM) ......................................................38
第四章 結果與討論..........................................................................................39
4.1 TiSiN/CrAlN薄膜、TiSiN薄膜與CrAlN薄膜分析.........................39
4.1.1薄膜成分....................................................................................39
4.1.2 SEM微結構分析......................................................................43
4.1.3 X繞射結構分析........................................................................49
4.1.4 膜厚、晶格常數、晶面間距、晶粒尺寸....................................55
4.1.5 TEM分析..................................................................................58
4.1.6 XPS分析...................................................................................64
4.2 薄膜機械性質分析.............................................................................67
4.3 TiSiN/CrAlN薄膜高溫氧化行為研究................................................70
4.3.1 TiSiN/CrAlN薄膜高溫氧化之成分分析.................................70
4.3.2 TiSiN/CrAlN薄膜高溫氧化之XRD分析................................72
4.3.3 TiSiN/CrAlN薄膜高溫氧化之XPS縱深分析.........................77
第五章 結論......................................................................................................82
參考文獻:
[1] Reiter AE. Presented at ICMCTF, San Diego, (2004)
[2] Endrino JL, Wachter A, Kuhnt E, Mettler T, Neuhaus J,Gey C.Presented at MRS Boston, (2004)
[3] D. J. Cheng, W. P. Sun, M. H. Hon, “The morphology and structure of chemically vapour-deposited Ti(C,N) coatint”, Thin Solid Films, 146, (1) (1987), 45-54
[4] B. E. Jacobson, C. V. Deshandey, H. J. Doerr, A. A. Karim, R. F. Bunshah, “Micorostructure and hardness of Ti(C,N) coating on steel prepared by the activated reactive evaporation technique”, Thin Solid Films, 118, (3) (1984), 285-292
[5] J. Patscheider, T. Zehnder, and M. Diserens, Surf. Coat .Technol. 201, (2001), 146-147
[6] M. Zhou, Y. Makino, Thin Solid Films, 339, ( 1999), 203
[7] Knotek, M. Bohmer et al., Materials Science & Engineering A, 105,(1988),481
[8] Tomas Polcara, Albano Cavaleiro, Materials Chemistry and Physics, 129, (2011), 195-201
[9] Y.C. Chim, X.Z. Ding, X.T. Zeng, S. Zhang, Thin Solid Films, 517, (2009), 4845-4849
[10] K.D. Bouzakis, G. Skordaris, S. Gerardis, G. Katirtzoglou, S. Makrimallakis, M. Pappa E. LilI, R. M'Saoubi, Surface & Coatings Technology, 204, (2009), 1061-1065
[11] Y.H. Cheng, T. Browne, B. Heckerman, E.I. Meletis, Surface & Coatings Technology, 204, (2010), 2123-2129
[12] Ho Y. Leea, Jeon G. Hana, Seung H. Baegb, Se H. Yangb, Surface and Coatings Technology, 174-175, (2003), 303-309
[13] Ho Y. Leea, Jeon G. Hana, Seung H. Baegb, Se H. Yangb, Thin Solid Films, 420-421, (2002), 414-420
[14] M. Zhou, Y. Makion, Thin Solid Films, 339,(1999),203
[15] O. Banakh, P.E. Schmid, R. Sanjines, F. Levy, Surface and Coatings Technology, 163-164, (2003), 57-61
[16] K. Ichijo, H. Hasegawa, T. Suzuki, Surface & Coatings Technology, 201, (2007), 5477-5480
[17] N. Fukumoto, H. Ezura, T. Suzuki, Surface & Coatings Technology, 204, (2009), 902-906
[18] “薄膜工程學”,全華圖書,(93.8)P1-7~1-8
[19] ”真空技術與應用”,國家實驗研究院儀器科技研究中心,2008
[20] “薄膜科技與應用”,全華科技圖書,2005
[21] Andres Gary, Society of vacuum, 20, (2000)
[22] “電子材料”,張勁燕,五南圖書
[23] “固體薄膜材料與制備技術”, 寧兆元、江美福、辛煜、葉超,科學出版社
[24] “VLIS 製造技術”,莊達人,高立圖書,(1998),P158
[25] “物理蒸鍍技術在3C產業之應用趨勢簡報”,楊森玉,金屬工業研究發展中心,(1995)
[26] S.K. Kim, P.V. Vinh, J.H. Kim, T. Ngoc, Surface & Coatings Technology, 200, (2005), 1391-1394
[27] Hiroyuki Hasegawa, Masahiro Kawate, Tetsuya Suzuki, Surface & Coatings Technology, 200, (2005), 2409-2413
[28] Gonzalo G. Fuentes, Eluxka Almandoz, Ruth Pierrugues, Rosario Martínez, Rafael J. Rodríguez, Jaume Caro, Montserrat Vilaseca, Surface & Coatings Technology, 205, (2010), 1368-1373
[29] “真空技術與應用” ,國科會精密儀器發展中心,全華圖書,13 (92.6) P350-450
[30] J. A. Thorton, Journal Vacuum Science Technology, 11, (1974), 666
[31] “模具處理手冊”,金屬工業研究發展中心,1998
[32] “Effect of PVD Ceramic Thin Films on wear and Fatigue Performances”,姚舜暉博士論文,國立成功大學,1998
[33] “腐蝕及其防制”,柯文賢,全華圖書,2003
[34] “薄膜科學與技術手冊上冊”,田民波、劉德令,機械工業出版社,486-493 (1991)
[35] J. A. Thorton, Journal of Vacuum Science and Technology, 11, (1974), 666
[36] Kenneth Holmberg Allan Matthews, Coatings Tribology, 2, 1994
[37] Messier, R., Giri, A. P., Roy, R. A., Revised structure zone model for thin film physical structure, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2, (1984), 500-503
[38] R. Messier, A. P. Giri and R. A. Roy, Journal of Vacuum Science and Technology A-Vacuum Surface and Films 2, (1984), 500-503.
[39] Frank H. W. L0ffler, Surface and Coating Techonlogy, 68/69, (1994), 729-740
[40] “陰極電弧放電被覆鈦鎳薄膜微觀組織之研究”, 翁克偉,逢甲大學材料科學研究所碩士論文,1998.
[41] “直流磁控濺鍍輔以氧離子助鍍光學薄膜於塑膠基板”,邱繼暐,國立中央大學光電科學研究所碩士論文,2004
[42] Hard Materials, 25, (2007), 400
[43] ”真空技術與應用”,賴冠仁,國家實驗研究院儀器科技研究中心,2001

[44] “物理冶金”,劉偉隆、林淳杰、曾春風、陳文照,全華圖書,2004,P9-1
[45] H. Holleck and V. Schier, Surface and Coating Techonlogy, (1995)76-77,328-336
[46] “反應濺鍍奈米結構氮化鋁鈦/氮化矽複合薄膜之研究”,姚寶順,國立成功大學材料科學及工程研究所博士論文,2004
[47] M. Setoyama, A. Nakayama, M. Tanaka, N.Kitagawa, T. Nomura, Surface and Coating Techonlogy, 86-87, (1996), 225-230
[48] M Setoyama, M. Irie, H. Ohara, M. Tsujioka, Y. Takeda, T. Nomura, N. Kitagaw, Thin Solid Films, 341, (1999), 126-131
[49] S. Veprek, S. Reiprich, and Li Shizhi, Appl. Phys. Lett,. 66, (1995), 2640-2642
[50] S. Veprek, Thin Solid Films, 297, (1997), 145-153
[51] C.T. Guo, D. Lee, P.C. Chen, Applied Surface Science, 254, (2008), 3130–3136
[52] P.C. Wo, P.R. Munroe, Z.F. Zhou, K.Y. Li , Z.H. Xie, Materials Science and Engineering, A 527, (2010), 4447–4457
[53] Sun Kyu Kim, Vinh Van Le, Thin Solid Films, 518, (2010), 7483–7486
[54] Ning Jiang, Y.G. Shen, H.J. Zhang, S.N. Bao, X.Y. Hou, Materials Science and Engineering, B 135, (2006), 1-9
[55] Xing-zhao Ding, X.T. Zeng, Y.C. Liu, F.Z. Fang, G.C. Lim, Thin Solid Films, 516, (2008), 1710-1715
[56] Tomas Polcara, Albano Cavaleiro, Materials Chemistry and Physics, 129, (2011), 195-201
[57] Masahiro Kawate, Ayako Kimura Hashimoto, Tetsuya Suzuki, Surface and Coatings Technology 165 (2003) 163-167
[58] J. Lin, B. Mishra, J.J. Moore, W.D. Sproul, Surface & Coatings Technology, 202, (2008), 3272-3283
[59] WEI Yong-qiang, LI Chun-wei, GONG Chun-zhi, TIAN Xiu-bo, YANG Shi-qin, Trans. Nonferrous Met. Soc. China 21, (2011), 1068-1073
[60] D.B. Lee, M.H. Kim, Y.C. Lee, S.C. Kwon, Surface and Coatings Technology, 141, (2001), 232-239
[61] O. Nakonechna, T. Cselle, M. Morstein, A. Karimi, Thin Solid Films, 447-448, (2004), 406-412
[62] F. Vaz, L. Rebouta, S. Ramos, Surface and Coatings Technology, 108-109, (1998), 236-240
[63] F. Vaz, L. Rebouta, S. Ramos, J. C. Soares, Vacuum, 52, (1999), 209-214
[64] Liping Wang, Guangan Zhang, R.J.K. Wood, S.C. Wang, Qunji Xue, Surface and Coatings Technology, 204, (2010), 3517-3524
[65] J. Lin, B. Mishra, J.J. Moore, W.D. Sproul, Surface and Coatings Technology, 202, (2008), 3272-3283

[66] “陰極電弧沉積AlTiN/CrN與CrAlSiN薄膜之微結構、機械性質與高溫氧化行為研究”,張啟邦,私立明道大學材料暨系統工程研究所,2008
[67] N. jiang, Y.G. Shen, H.j. Zhang, Materials Science and Engineering, 135, (2006), P1-9
[68] M.A. Baker, S.J. Greavesa, E. Wendler, V. Fox, Thin Solid Films, 377-378, (2000), 473-477.
[69] G.E. NcGuire, G.K. Schweitzer, T.A. Carlson, Inorg. Chem. 12, (1973), 2451
[70] Chi-Lung Chang, Jyh-Wei Lee, Ming-Don Tseng, Thin Solid Films, 517, (2009), 5231-5236
[71] J.A. Taylor, J.W. Rabalais, J. Chem. Phys. 75, (1981), 1735
[72] Daoai Wang, Feng Zhou, Chengwei Wang, Weimin Liu, Microporous and Mesoporous Materials, 116, (2008), 658-664
[73] G.M. Ingo, N. Zacchetti, High Temperature Science, 28, (1990), 137
[74] T. Goto, T. Hirai, Journal of Materials Science, 7, (1988), 548
[75] “The high temperature oxidation of Ti-Al-Si-N thin film synthesized on stainless steel”,陳柏諺,私立明道大學材料暨系統工程研究所,2009
[76] B.E.warren, X-Ray Diffraction, (1969)
[77] Xing-zhao Ding, X.T. Zeng, Y.C. Liu, F.Z. Fang, G.C. Lim, Thin Solid Films, 516, (2008), 1710-1715
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔