(3.227.249.155) 您好!臺灣時間:2021/05/07 05:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:郭士誠
研究生(外文):Kuo, Shih Chen
論文名稱:製備複合式聚乙烯醇陰離子交換膜與其應用在鹼性直接甲醇燃料電池
論文名稱(外文):Preparation of anion-exchange composite PVA membranes and their application on an alkaline direct methanol fuel cells (ADMFCs)
指導教授:楊純誠楊純誠引用關係
指導教授(外文):Yang, Chun Chen
口試委員:呂幸江李英正林聲仁
口試委員(外文):Lue, Hsing ChiangLi, Ying ChengLin, Sheng Jen
口試日期:2011-07-04
學位類別:碩士
校院名稱:明志科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:124
中文關鍵詞:鹼性直接甲醇燃料電池聚乙烯醇12-二甲基-3-丙基咪唑中孔洞分子篩甲醇穿透率
外文關鍵詞:Alkaline direct methanol fuel cells (ADMFCs)Poly(vinyl alcohol) (PVA)1,2-Dimethyl-3-propylimidazolium (DMPII)Mesoporous molecular sieve (MCM41)Methanol permeability
相關次數:
  • 被引用被引用:1
  • 點閱點閱:196
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
本論文製備複合式陰離子交換膜及應用在鹼性直接甲醇燃料電池(Alkaline direct methanol fuel cells, ADMFCs)中與特性研究分析探討,使用的高分子為親水性材料聚乙烯醇(poly(vinyl alcohol), PVA),並加入中孔洞分子篩(MCM41, mesoporous molecular sieve)做為填充料,此填充料先經過含有咪唑類型的離子液體(1,2-Dimethyl-3-propylimidazolium, DMPII)摻合改質成為I-MCM41,成為具有銨鹽的填充料,再將此改質的填充料摻合在PVA高分子中,製備出複合式PVA/I-MCM41陰離子交換膜。對製備完成的陰離子交換膜進行材料性質檢測,在物性分析方面,包括:對水、4M KOH及甲醇溶液的吸收度和膨脹率量測;另外,以熱重分析儀(TGA)及動態分析儀(DMA)檢測高分子膜的熱穩定性及機械強度;利用顯微拉曼(micro-Raman)及傅立葉轉換紅外光光譜儀(FTIR)分析PVA高分子薄膜是否有改質成功;而使用交流阻抗分析儀量測高分子薄膜的離子導電度。由實驗結果發現此複合式陰離子交換膜浸漬於去離子水後,在常溫下,離子導電度可達1.81×10-3 S cm-1;甲醇穿透率(Methanol permeability)改質後可下降至9.8×10-7 cm2 s-1,與市售的Nafion 117薄膜相比擁有較低的甲醇穿透率。此外,由全電池分析結果顯示當燃料組成為4M KOH + 2M CH3OH時的DMFC電性表現為最佳;在30oC下,功率密度可達40 mW cm-2,與文獻上的數據做比較,發現本研究所製備的複合式PVA/I-MCM41陰離子交換膜有相當大的潛力應用於鹼性直接甲醇燃料電池。
In this study, we prepared a composite anion-exchange membrane to use in alkaline direct methanol fuel cells (ADMFCs). The polymer substrate is a highly hydrophilic poly(vinyl alcohol) (PVA) polymer and 1,2-Dimethyl-3-propylimidazolium (DMPII) ionic liquid to modify inorganic materials (mesoporous molecular sieve, MCM41), then different weight ratios was added into PVA to form an organic-inorganic hybrid anion-exchange membrane. Some basic characteristic properties of PVA/I-MCM41 composite membranes were examined, such as absorption and swelling ratio in water, methanol, and 4M KOH. Thermal gravimetric analysis (TGA), dynamic mechanical analysis (DMA), scanning electron microscopy (SEM), micro-Raman spectroscopy, elemental analyzer (EA) and AC impedance method were also used to examine the properties of the anion-exchange membrane. These PVA/I-MCM41 composite membranes showed the highest ionic conductivity of 1.8×10-3 S cm-1 in D.I. water at 30℃. The lowest methanol permeability of the PVA/I-MCM41 composite membranes was about 9.8×10-7 cm2 s-1, which was lower than the Nafion 117 film. Alkaline direct methanol fuel cells comprised of PVA/I-MCM41 composite membranes, were assembled and analyzed. The peak power density (P.D.max) of the cell by employing 4M KOH + 2M CH3OH as a fuel was 40 mW cm-2 at 30oC. These as-prepared composite anion-exchange membranes show highly potential candidate for ADMFC applications.
明志科技大學碩士學位論文指導教授推薦書 i
明志科技大學碩士學位論文口試委員會審定書 ii
明志科技大學學位論文授權書 iii
誌 謝 iv
中文摘要 v
英文摘要 vi
目錄 vii
表目錄 x
圖目錄 xii
第一章、緒論 1
1.1 前言 1
1.2 研究動機 3
第二章、文獻回顧 4
2.1直接甲醇燃料電池簡介 4
2.2直接甲醇燃料電池的極化 5
2.3直接甲醇燃料電池中各元件的介紹 8
2.3.1 DMFC中的陽電極 8
2.3.2 DMFC中的陰電極 9
2.3.3高分子電解質膜 10
2.4鹼性直接甲醇燃料電池的電化學反應及發展現況 10
2.5有機/無機混成高分子電解質膜 12
2.5.1聚乙烯醇簡介 12
2.5.2高分子電解質薄膜相關研究文獻 13
2.6 MCM41 (Silica, mesoporous molecular sieve)簡介 15
2.7離子液體(Ionic liquid)簡介 18
第三章、實驗方法 20
3.1實驗藥品與材料 20
3.2儀器設備與器材 21
3.3實驗項目及步驟 22
3.3.1 MCM41填充物的改質製備 22
3.3.2複合式PVA/I-MCM41陰離子交換膜的製備 22
3.3.3燃料電池陽極的製備 24
3.3.4燃料電池陰極(空氣極)的製備 25
3.4複合式PVA/I-MCM41陰離子交換膜材料性質分析 26
3.4.1表面結構分析(SEM) 26
3.4.2含水率及膨潤度的量測 27
3.4.3複合式PVA陰離子交換膜甲醇穿透測試 28
3.4.4複合式PVA/I-MCM41陰離子交換膜的離子導電度量測 29
3.4.5顯微拉曼光譜儀(Micro-Raman)分析介紹 31
3.4.6電解質膜中的氮(N)元素含量分析 32
3.4.7熱穩定性分析 32
3.4.8機械性質分析 33
3.4.9官能基鍵結分析 35
3.4.10離子交換容量(Ion-exchange capacity, IEC) 35
3.4.11直接甲醇燃料電池(DMFC)的電性分析 36
第四章、結果與討論 38
4.1複合式PVA/I-MCM41陰離子交換膜的物性分析 38
4.1.1表面結構分析 38
4.1.2顯微拉曼分析 41
4.1.3官能基結構分析 (FTIR) 47
4.1.4氮(N)元素含量分析 52
4.1.5熱性質分析 54
4.1.6機械性質分析 (DMA) 58
4.1.7含水率及膨潤度分析 61
4.1.8甲醇穿透率(Methanol permeability)分析 62
4.1.9離子交換容量(Ion-exchange capacity, IEC)分析 63
4.1.10結晶性分析 (XRD) 65
4.2離子導電度量測 66
4.3 DMFC組裝與全電池電性分析 74
第五章、結論 99
第六章、參考文獻 101


1.C.M. Lai, J.C. Lin, F.P. Ting, S.D. Chyou, K.L. Hsueh, “Contributio of Nafion loading to the activity of catalysts and the performance of PEMFC”, Int. J. hydrogen energy 33 (2008) 4132-4137.
2.J.W. Rhim, C.K. Yeom, S.W. Kim, “Modification of poly (vinyl alcohol ) membranes using sulfosuccinic acid and its application to prevaporation separation of water-alcohol mixture”, J. Appl. Polym. Sci. 68 (1998) 1717-1723.
3.W.Y. Chiang, C.L. Chen, “Separation of water–alcohol mixture by using polymer membranes. 6. Water-alcohol pervaporation through terpolymer of PVA gragted with hydrazine reacted SMA”, Polymer 39 (1998) 2227-2233.
4.J.W. Rhim, Y.K. Kim, “Pervaporation separation of MTBE methanol mixture using cross-linked PVA membranes”, J. Appl. Polym. 75 (2000) 1699-1707.
5.J.W. Rhim, M.Y. Sohn, H.J. Joo, K.H. Lee, “Pervaporation separation of binary organic-aqueous liquid mixtures using crosslinked PVA membranes. I. Characterization of the reaction between PVA and PAA”, J. Appl. Polym. 50 (1993) 679-684.
6.U. Boddel, “The birth of the fuel cell, ISBN”, 3-905592-06-1 (2000) 1835-1845.
7.S. Surampudi, S.R. Narayanan, E. Vamos, "Advances in direct methanol fuel-cells", J. Power Sources 47 (1994) 377-385.
8.P. Costamagna, S. Srinivasan, “Quantum jumps in the PEMFC science and technology from the 1960s to the Year 2000 Part I. Fundamental scientific aspects”, J. Power Sources 102(1-2) (2001) 242-252.
9.K. Sundmacher, T. Schultz, S. Zhou, K. Scott, M. Ginkel, E.D. Gilles, ”Dynamics of the direct methanol fuel cell (DMFC): Experiments and model-based analysis” Chem. Eng. Science 56 (2001) 333-341.
10.A. Hamnett, ” Mechanism and electrocatalysis in the direct methanol fuel cell”, Catal. Today 38 (1997) 445-457.
11.郭文法, ”奈米複合材料加工應用”, 工業材料 125 期 (1997)。
12.R. Magaraphan, W. Lilayuthalert, A. Sirivat and J.W. Schwank, ” Preparation, structure, properties and thermal behavior of rigid-rod polyimide/montmorillonite nanocomposites”, Composites Sci. Technol. 61 (2001) 1253-1264.
13.M.P. Hogarth, T.R. Ralph, “Catalysis for low temperature fuel cells : Part III: Challenges for the direct methanol fuel cell”, Platin. Met. Re. 46 (2002) 146-164.
14.W.L. Valbuena, V.A. Paganin, E.R.Gonzalez, ”Methanol electro-oxidation on gas diffusion electrodes prepared with Pt-Ru/C catalysts”, Electrochim. Acta 47 (2002) 3715-3722.
15.H. Yang, N.A. Vante, J.M. Léger, C. Lamy, “Tailoring, structure, and activity of carbon-supported nanosized Pt-Cr alloy electrocatalysts for oxygen reduction in pure and methanol containing electrolytes”, J. Phys. Chem. B. 108 (2004) 1938-1947.
16.J.G. Liu, T.S. Zhao, R. Chen, C.W. Wong, “The effect of methanol concentration on the performance of a passive DMFC”, Electrochem. Commun. 7 (2005) 288-294.
17.C.C. Yang, “Preparation and characterization of electrochemical properties of air cathode electrode”, Int. J. Hydrogen Energy 29 (2004) 135-143.
18.C.C. Yang, S.T. Hsu, W.C. Chien, M.C. Shih, S.J. Chiu, K.T Lee, C.L. Wang, “Electrochemical properties of air electrodes based on MnO2 catalysts supported on binary carbons”, Int. J. Hydrogen Energy 31 (2006) 2076-2087.
19.E.H. Yu, K. Scott, ” Development of direct methanol alkaline fuel cells using anion exchange membranes”, J. Power Sources 137 (2004) 248-256.
20.李苑禎, “複合式聚乙烯醇/蒙脫土高分子電解質膜應用在酸性直接甲醇燃料電池”, 明志科技大學化工與材料研究所 (2008).
21.S.J. Lue, W.T. Wang, K.P.O. Mahesh, C.C. Yang, “Enhanced performance of a direct methanol alkaline fuel cell(DMAFC) using a polyvinyl alcohol/fumed silica/KOH electrolyte.” J. Power Sources 195 (2010) 7991-7999.
22.K. Matsuoka, Y. Iriyama, T. Abe, M. Matsuoka, Z. Ogumi, ”Alkaline direct alcohol fuel cells using an anion exchange membrane”, J. Power Sources 150 (2005) 27-31.
23.尤明瑤,”以水溶液分散技術製備聚乙烯醇/蒙脫土奈米複合材料及其性質與應用研究”, 私立中原大學,化學研究所 (2003)。
24.長春化學股份有限公司,物質安全資料表(MSDS),http://www.ccp.com.tw/MSDSnew.nsf/0/9648A78DB810478248257459000AB36E?OpenDocument (網路資料)。
25.S. Sang, J. Zhang, Q. Wu, Y. Liao, “ Influences of Bentonite on conductivity of composite solid alkaline polymer electrolyte PVA-Bentonite-KOH-H2O“, Electrochim. Acta 52 (2007) 7315-7321.
26.J.S. Lee, T. Nohira, R. Hagiwara,” Novel composite electrolyte membranes consisting of fluorohydrogenate ionic liquid and polymers for the unhumidified intermediate temperature fuel cell”, J. Power Sources 171 (2007) 535-539.
27.Y. Xiong, J. Fang, Q.H. Zeng, Q.L. Liu, ”Preparation and characterization of cross-linked quaternized poly(vinyl alcohol) membranes for anion exchange membrane fuel cells”, J. Membr. Sci. 311 (2008) 319-325.
28.Y. Xiong, Q.L. Liu, A.M. Zhu, S.M. Huang, Q.H. Zeng, ” Performance of organic–inorganic hybrid anion-exchange membranes for alkaline direct methanol fuel cells”, J. Power Sources 186 (2009) 328-333.
29.X. Zhu, B. Wang, H. Wang, “Effects of [Bmim]OH on structure and conductive properties of alkaline PVA/[Bmim]OH membranes”, Polym. Bull. 65(2010) 719-730.
30.M. Guo, J. Fang, H. Xu, W. Li, X. Lu, C. Lan, K. Li, “Synthesis and characterization of novel anion exchange membranes based on imidazolium-type ionic liquid for alkaline fuel cells”, J. Membr. Sci. 362 (2010) 97-104.
31.C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, “Order mesoporous molecular sieves synthesized by a liquid-crystal template mechanism”, Nature 359 (1992) 710-712.
32.J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C. T-W. Chu, D.H. Olson, E.W. Sheppard, S.B. Higgins, J.L. Schlenker, “A new family of mesoporous molecular sieves prepared with liquid crystal tempaltes”, J. Am. Chem. Soc. 114 (1992) 10834-10843.
33.李青雲,” 探討中孔徑氧化矽材料結構中之奈米錫-氧的鍵結形式”, 國立中央大學化學研究所碩士論文 (2000)。
34.A. Sayari, “Tailoring surface and structural properties of MCM-41 silicas by bonding organosilanes”, J. Phys. Chem. B;102 (28) (1998) 5503-5510.
35.K.R. Seddon, A. Stark, M.-J. Torres, ”Influence of chloride, water, and organic solvent on the physical properties of ionic liquid”, Pure Appl. Chem. 72 (2000) 2275-2287.
36.何文岳, “離子液體在染料敏化太陽能電池電解液之應用”, 化工 第56卷 第2期 (2009)
37.R.G. Reddy, B. Wu, R.D. Rogers, “Novel ionic liquid thermal storage for solar thermal electric power systems.”, Solar Energy, The power to Choose, ASME Proceedings of Solar Forum 2001, Washington DC, April (2001) 21-25.
38.M. Koel, “Ionic Liquids in Chemical Analysis” Critical Reviews in Analytical Chemistry (2005) 177-192.
39.T. Payagala, Y. Zhang, E. Wanigasekara, K. Huang, Z.S. Breitbach, P.S. Sharma, L.M. Sidisky, D.W. Armstrong, “Trigonal tricationic ionic liquids: A generation if gas chromatographic stationary phases”, Anal. Chem. 81 (2009) 160-173.
40.Y. Gu, J. Peng, K. Qiao, H. Yang, “Room temperature ionic liquids and their applications in catalysis and organic reactions”, Progress in Chemistry, (2003) 222-241.
41.邱聖心, “Preparation of alkaline composite PVA anion-exchange membranes and its application to a direct methanol fuel cell (DMFC)”, 明志科技大學化工研究所碩士論文 (2009).
42.Skoog, Holler, Nieman, ”Principle of Instrumental analysis.”, fifth edition, Harcourt Asia Pte Ltd (1997).
43.K. Kordesch, G. Simader, “Fuel cells and their applications”, VCH, New York (1996) 23-50.
44.S. Miachon, P. Aldebert, “Internal hydration H2/O2 100 cm2 polymer electrolyte membrane fuel cell ”, J. Power Source 56 (1995) 31-36.
45.P.S. Thomas, B.H. Stuart, “A Fourier transform Raman spectroscopy study of water sorption by poly(vinyl alchol)”, Spectrochimica Acta Part A 53 (1997) 2275-2278.
46.N.E. Heimer, R.E. Del Sesto, Z. Meng, J.S. Wilkes, W.R. Carper,” Vibrational spectra of imidazolium tetrafluoroborate ionic liquids”, J. of Molecular Liquids 124 (2006) 84-95.
47.S. Rajendran, M. Sivakumar, R. Subadevi, M. Nirmala, ”Characterization of PVA-PVdF based solid polymer blend electrolyte”, Physica B 348 (2004) 73-78.
48.Y. Woo, S.Y. Oh, Y.S. Kang, B. Jung, “Synthesis and characterization of sulfonated polyimidemembranes for direct methanol fuel cell”, J. Membr. Sci. 220 (2003) 31-45.
49.林哲增, “複合式聚乙烯醇/二氧化鈦高分子電解質膜研究與其應用在鹼性直接甲醇燃料電池”, 明志科技大學化工與材料研究所 (2007).
50.E.H. Yu, K. Scott, “Direct methanol alkaline fuel cell with catalysed metal mesh anodes”, Electrochem. Comm. 6 (2004) 361-365.
51.C.C. Yang, S.J. Chiu, K.T. Lee, W.C. Chien, C.T. Lin, C.A. Huang, ” Study of poly(vinyl alcohol)/titanium oxide composite polymer membranes and their application on alkaline direct alcohol fuel cell”, J. Power Sources184 (2008) 44-51.
52.C.C. Yang, C.T. Lin, S.J. Chiu, ” Preparation of the PVA/HAP composite polymer membrane for alkaline DMFC application”, Desalination 233 (2008) 137-146.
53.J. Kim, T. Momma, T. Osaka, “Cell performance of Pd–Sn catalyst in passive direct methanol alkaline fuel cell using anion exchange membrane”, J. Power Sources 189 (2009) 999-1002.
54.E.H. Yu, U. Krewer, K. Scott, ”Review, principles and materials aspects of direct alkaline alcohol fuel cells”, Energies 3 (2010) 1499-1528.
55.J.R. Varcoe, R.C.T. Slade, E.L.H. Yee, S.D. Poynton, D.J. Driscoll, D.C. Apperley, “Poly(ethylene-co-tetrafluoroethylene)-derived radiation-grafted anion-exchange membrane with properties specifically tailored for application in metal-cation-free alkaline polymer electrolyte fuel cells”, Chem. Mater. 19 (2007) 2686-2693.
56.J. Hu, C. Zhang, J. Cong, H. Toyoda, M. Nagatsu, Y. Meng, “Plasma-grafted alkaline anion-exchange membranes based on polyvinyl chloride for potential application in direct alcohol fuel cell”, J. Power Sources 196 (2011) 4483-4490.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔