跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/23 19:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭彥霖
研究生(外文):Peng, Yanlin
論文名稱:無機聚合法製備LAS多孔性濾材及應用
論文名稱(外文):Syntheses Of Lithium Aluminosilicate Of Porous Filters By Geopolymerization And Application
指導教授:李國通李國通引用關係
指導教授(外文):Lee, Kuotong
口試委員:施正元孫詠明
口試委員(外文):Shih, JengywanSun, Yungming
口試日期:2012-01-06
學位類別:碩士
校院名稱:明志科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:90
中文關鍵詞:無機聚合法陶瓷濾材氣體滲選鋰鋁矽酸鹽
外文關鍵詞:geopolymerizationceramic filtersgas infiltrationlithium aluminosilica
相關次數:
  • 被引用被引用:1
  • 點閱點閱:262
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
由鹼性溶液激發鋰鋁矽酸鹽玻璃顆粒,產生聚合反應後之無機聚合物(Geopolymer),具有高孔隙度之特性。本研究模擬二氧化碳(CO2)與甲烷(CH4)兩種主要溫室氣體,進行甲烷乾基重組反應,生成氫氣(H2)後,以自製鋰鋁矽酸鹽(LAS)多孔性陶瓷濾材,進行氣體滲選分離試驗,期望提升產率。
本研究製備之多孔隙濾材是以LAS玻璃粉末、氫氧化鉀(KOH)及矽酸鈉(Na2Si4O9)利用無機聚合法製備,並探討LAS玻璃粉末的球磨減徑效應,以及KOH溶液濃度與養護溫度等製程條件對於聚合反應之影響。實驗結果顯示最佳球磨時間20h,LAS玻璃粉末減徑至2μm,無機聚合物的最佳養護溫度60℃、鹼液濃度10N。又由FE-SEM實驗結果顯示,隨著矽鹼比由0.199增至0.463,其孔隙由95nm降低至25nm。
本研究並使用二氧化碳檢測LAS無機聚合濾材之孔隙連通性。模擬甲烷乾基重組反應之混合氣體進行滲選分離試驗,二氧化碳與氫氣生成物分離效果良好,氫氣滲選係數由554(矽鹼比0.199)至2498(矽鹼比0.463)。

Lithium aluminosilicate (LAS) glass particles can be produced in alkaline solutions. Geoploymers produced by a polymerization reaction have the characteristic of high porosity. This study used the two major greenhouse gases of CO2 and CH4 to simulate the production of LAS porous ceramic filters with H2 produced through methane-based reforming procedures. Then, we conducted gas infiltration and separation experiments to promote the production rate.
The porous filter materials were LAS glass particles, KOH, and Na2Si4O9 produced through geopolymerization. This study also examined the ball milling and diameter shrinking effects of LAS glass particles and the effect of KOH solutions and curing temperatures on polymerization. The experimental results indicate that the optimal ball-milling time was 20 h, the diameter of the LAS glass particles shrunk to 2μm, the optimal curing temperature of geopolymers was 60℃, and the optimal concentration of the alkaline solution was 10N. The FE-SEM results indicate that when the silica-alkali ratio increased from 0.199 to 0.463, the pore diameter decreased from95nm to20nm.
This study also used CO2 to examine the pre-connection of the LAS geopolymerized filters.The mixed gas infiltration and separation experiments using the methane-based reforming procedures revealed that the separation effect of CO2 and hydrogen products was appropriate and that the hydrogen infiltration coefficients were between 554 (silica-alkali ratio = 0.199) and 2498 (silica-alkali ratio = 0.463).

明志科技大學碩士學位論文指導教授推薦書………………………….i
明志科技大學碩士學位論文口試委員審定書…………………………ii
明志科技大學學位論文授權書………………………………………...iii
誌謝…………………………………………………………………...…iv
摘要…………………………………………………………………...….v
Abstract…………………………………………………………………..vi
目錄…...………………………………………………………………..viii
表目錄…………………………………………………………………..xii
圖目錄………………………………………………...………………..xiii

第一章 緒論……………………………………………………………..1
1-1研究動機………………………………………...………….1
1-2研究目的……………………………………………...…….3

第二章 理論基礎與文獻回顧…………………………………………..4
2-1鋰鋁矽酸鹽(LAS)……………………………...…………...4
2-1-1鋰鋁矽酸鹽(LAS)三相…………………………………...4
2-1-2 eucryptite結構及負熱膨脹原理……………..……...…...5
2-1-3製備鋰鋁矽酸鹽(LAS)之製備……………………..…….6
(1)固態反應法………...………………………...……..…….6
(2)玻璃陶瓷法……………………………………………………6
(3)溶膠-凝膠法……………………………………………………7
2-2多孔隙陶瓷…………………………………………………8
2-3無機聚合物…………………....……………...……....…...10
2-3-1發展史…....……………………………….………....…..10
2-3-2無機聚合應..............……………….…………………...11
(1)矽酸鈉溶液…….…………………..……………………11
(2)無機聚合物生成機制………………………...…………11
(3)無機聚合物之結構………...……………..……….….…12
2-4影響無機聚合物之因素………….………………….……14
2-4-1原始物料……….……………………………….….……15
2-4-2鹼性溶液…………………………………….….….……16
2-4-3鹼性矽酸鹽溶液…..…….….…………..………….……17
2-4-4各種配比…………………………………..……….……18
2-4-5養護溫度………………………..……….………………20
2-4-6水分含量……………………………………………...…20
2-5孔隙的生成……………………………………………..…21
2-6甲烷乾基重組反應………………………………………..21
第三章、實驗方法………………..……………………………………..31
3-1藥品………………………………………………………..31
3-2實驗儀器及設備…………………………………………..33
3-3實驗步驟…………………………………………………..37
3-3-1 LAS玻璃之製備………………………………………..37
3-3-2球磨減徑……………………………………….………..37
3-3-3氫氧化鉀及矽酸鈉水溶液之配製……….……………..38
3-3-4無機聚合物之製備………………………………….…..38
3-3-5密度與孔隙率等物性測試………………………….…..39
3-3-6孔隙顯微形貌及連通性檢測…………………………...40
3-3-7比表面積BET分析測試……....…………….………….40
3-3-8無機聚合物之機械強度測試…....……………………...41
3-3-9混合氣體之滲選分離測試....…………………………...41
第四章、實驗結果與討論…………………………………………..…..53
4-1結晶態對無機聚合反應之效應………………...……..…..53
4-2 LAS粉減徑之最適研磨條件…...……..……………….....54
4-3鹼液KOH的濃度效應……………………………..……....54
4-4養護溫度的效應..………………………………………....56
4-5養護溫度及KOH濃度之綜合效應……...…………...…....57
4-6孔隙尺寸之矽鹼比效應……………...……………...….....58
4-7體密度與孔隙率之矽鹼比效應...........................................59
4-8比表面積(BET)測試............................................................60
4-9無機聚合物機械強度之矽鹼比效應...................................60
4-10孔隙連通性之矽鹼比效應.................................................61
4-11 LAS多孔性濾材之滲選分離效應....................................61
4-12無機聚合物之水銀測孔(MIP)及熱膨脹係數測試...........62
第五章、結論與建議................................................................................84
5-1結論.......................................................................................84
5-2建議.......................................................................................85
參考文獻..................................................................................................86

1.范建得 主編(2008),京都議定書與清潔發展機制CDM 100問。台北市,元照出版公司。
2.F. Fisher, H. Tropsch, “Conversion of methane into hydrogen and carbon monoxide”, Brennstoff-Chemie , Vol.9, P.39-46(1928).
3.A. I. Lichtenstein, R. O. Jones, “Anisotropic thermal expansion in the silicate β-eucryptite: A neutron diffraction and density functional study”, Physical Review B: Condensed Matter and Materials Physics, Vol.58, P.6219-6223(1998).
4.R. A . Hatch, “Phase equilibrium in the system:Li2O-Al2O3-SiO2”, Mineralogical Society of America, Vol.28, P.471-496(1943).
5.H. G. F. Winkler, “Synthesis and Crystal Structure of Eucrptite, LiAlSiO4”, Ceramic Abstracts June , P.156(1949).
6.R. Roy, D. M. Roy, E. F. Osborn, “Compositional and Stability Relationships Among the Lithium Aluminosilicates:Eucrypite, Spodumene and Petalite”, Journal of the American Ceramic Society, Vol.33, P.152(1978).
7.Z. Strnad, “Glass-Ceramic Materials Liquid Phase Separation, Nucleation and Crystallization in Glasses”, Amsterdam: Elsevier , P.97-110(1986).
8.P. A. Jezek, D. E Appleman, “Virgilite: a new lithium aluminum silicate mineral from the Macusani glass Peru”, Mineralogical Society of America, Vol.63, P.461-465(1978).
9.F. A. Hummel, “Thermal Expansion Properties of Some Synthetic Lithia Minerals”, Journal of the American Ceramic Society, Vol.34, P.235-239(1951).
10.P. E. Doherty, D.W.Lee, R.S.Davis, “Direct Observation of the Crystallization of Li2O-Al2O3-SiO2 Glasses Containing TiO2”, Journal of the American Ceramic Society, P.77-81(1967).
11.E. A. Bush, F. A. Hummel, “High-Temperature Mechanical Properties of Ceramic Materials:II Beta-Eucryptite”, Journal of the American Ceramic Society, Vol.42, P.388-391(1959).
12.H. Schulz, “Thermal Expansion of Beta Eucryptite”, Journal of the American Ceramic Society, Vol.57, P.313-318(1974).
13.H. Xu, P. J. Heaney, H. Bohm, “Structural Modulations and Phase Transition In β-Eucrptite an in-situ TEM Study”, Physics and Chemistry of Minerals, Vol.26, P.633-634(1999).
14.S. Kinickerbocker, M. R. Tuzzolo, S. Lawhorne, “β-spodumene glass-ceramics”, Journal of the American Ceramic Society, Vol.72, P.1873-1879(1989).
15.黃文魁,經濟部技術處ITIS計畫,ITIS產業資訊服務網(2003)。
16.J. Davidovits, “Geopolymer chemistry and applications a practical and scientific approach to sustainable development”, Editors: J. Davidovits, 2nd edition, Institut Géopolymère, Saint- Quentin ,France, P.3-18(2008).
17.H. Xu . J. S. J. Van Deventer, “The geopolymerisation of alumino -silicate minerals”, International Journal Minerals Process , Vol.59, P. 247-266(2000).
18.D. M. Roy, “Alkali-activated cements: opportunities and challenges”, Cement and Concrete Research, Vol. 29, No.2, pp.249-254(1999).
19.H. Xu, J. S. J. Van Deventer, G. C. Lukey, “Effect of alkali metals on the preferential geopolymerization of stilbite/kaolinite mixtures”, International Engineering Chemical Research, Vol.40, P. 3749-3756(2001).
20.戴詩潔,” 高嶺石鋁矽酸鹽聚合材料之研究”,國立台北科技大學碩士論文(2005)。(鄭大偉指導教授)
21.J. Davidovits, “30 Years of successes and failures in geopolymer applications. market trends and potential breakthroughs”, Geopolymer 2002 3rd International Conference, Melbourne, Australia ,CD-ROM , (2002).
22.V. F. F Barbosa, K. J. D. MacKenzie, C. Thaumaturgo, “Synthesis and characterization of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers”, International Journal of Inorganic Materials , Vol.2, P.309-317(2000).
23.J. W. Phair, J. S. J. Van Deventer, “Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers”, International Journal Minerals Process , Vol.66, P.121-143(2002).
24.J. Davidovits, “Geopolymers: Inorganic polymeric new materials” , Journal of Thermal Analysis, Vol.37, P.1633-1656 ,(1991).
25.M. Schmucker, K. J. D. Mackenzie, “Microstructure of sodium polysialate siloxo geopolymer”, Ceramics International, Vol.31, P.433-437(2004).
26.S. D. Wang, K. L. Scrivener, P. L. Pratt, “Factors affecting the strength of alkali-activated slag”,Cement and Concrete Research , Vol.24 , P.1033-1043(1994).
27.C. Kaps, A. Buchwald, “Property controlling influences on the generation of geopolymeric binders based on clay”, Geopolymer 2002 3rd International Conference, Melbourne , Australia , CD-ROM,(2002).
28.J. G. S. Van Jaarsveld, J. S. J Van Deventer, “Effect of the alkali metal activator on the properties of fly ash-based geopolymers”, Industrial Engineering Chemical Research, Vol.38, P.3932-3941 (1999).
29.李元凱,”偏高嶺土聚合膠體工程性質之研究”,國立台灣科技大學碩士論文(2008)。(張大鵬指導教授)
30.P. D. Silva, K Sagoe-Crenstil, V. Sirivivatnanon, “Kinetics of geopolymerization: Role of Al2O3 and SiO2”, Cement and Concrete Research, Vol.37, P.512-518(2007).
31.T. Bakharev, J. G. Sanjayan, Y. B. Cheng, “Effect of elevated temperature curing on properties of alkali-activated slag concrete”,Cement and Concrete Research, Vol.29, P.1619-1625 (1999).
32.D. L. Y. Kong, J. G.Sanjayan, “Damage behavior of geopolymer composites exposed to elevated temperatures”, Cement and Concrete Composites, Vol.30, P.986-991(2008).
33.J. C. S.wanepoel, C. A. Strydom, “Utilisation of fly ash in a geopoly- meric material”, Applied Geochemistry, Vol.17, P.1143- 1148(2002).
34.林建宏,”氟離子去除技術應用於mMCOC/LAS混成材料之研究”私立明志科技大學碩士論文(2005)。(李國通指導教授)
35.P. Duxson , A. Fernández-Jiménez , J. L. Provis, G. C. Lukey, A. Palomo, J. S. J. van Deventer, “Geopolymer technology: the current state of the art”, Journal of Materials Science , Vol.42 , P.2917-2933(2007).
36.J. Davidovits, “Geopolymer chemistry and sustainable development. The poly(sialate) terminology : a very useful and simple model for the promotion and understanding of green-chemistry” , Geopolymer, Green Chemistry and Sustainable Development Solutions , Editors: J.Davidovits , Saint-Quentin, France: Géopolymère Institute, P.9-15(2005).
37.A. Gayen, K. R. Priolkar, P. R. Sarode, V. Jayaram, M. S. Hegde, G. N. Subbanna, S. Emura, “Ce1-xRhxO2-δ Solid Solution Formation in Combustion-Synthesized Rh/CeO2 Catalyst Studied by XRD, TEM,XPS, and EXAFS”, Chemistry of Materials, Vol.16, P.2317-2328(2004).
38.蔡龍震,”以無機聚合法製備陶瓷濾材並應用於溫室氣體轉化反應”私立明志科技大學碩士論文(2009)。(李國通指導教授)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top