(3.227.235.183) 您好!臺灣時間:2021/04/14 19:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林瑞德
研究生(外文):Lin, Rueide
論文名稱:脈衝直流濺鍍氧化鋯基奈米薄膜離子導電性之研究
論文名稱(外文):Investigation of the Ionic Conductivity of ZrO2-Based Nano-Films Grown by Pulsed-DC Sputtering
指導教授:程志賢
指導教授(外文):Cherng, Jyhshiarn
口試委員:盧榮宏劉旭禎
口試委員(外文):Lu, JonghongLiu, Shiujen
口試日期:2012-09-26
學位類別:碩士
校院名稱:明志科技大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:中文
論文頁數:81
中文關鍵詞:濺鍍模式YSZ多晶薄膜離子導電性介面效應殘留應力
外文關鍵詞:sputtering modepolycrystalline YSZ filmionic conductivityinterface effectresidual stress
相關次數:
  • 被引用被引用:0
  • 點閱點閱:202
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以脈衝直流濺鍍,配合電漿激發偵測系統(PEM)之迴路控制,將yttria-stabilized zirconia (YSZ)多晶薄膜沉積於石英基板,藉由X光繞射儀(XRD)鑑別薄膜的晶體結構,以穿透式電子顯微鏡(TEM)進行薄膜之微觀分析,利用交流阻抗分析儀(AC impedance analyzer)測量薄膜之離子導電性。
利用PEM系統的迴路控制,於不同靶材毒化率下沉積薄膜。在transition mode條件下,毒化率為45%的薄膜其顯微結構經TEM分析發現,初沉積的非晶與奈米晶之混合結構,經400oC退火發生異常的晶粒成長,其晶粒尺寸達數百奈米。此外,薄膜中因具有較少的缺陷,使得晶界對離子遷移的阻礙效應降低,其離子導電性優於poisoned mode約半個數量級。
以cos2αsin2ψ模式對不同薄膜厚度的YSZ多晶薄膜於退火前後進行殘留應力分析。退火前,薄膜之殘留應力為壓應力,隨著薄膜厚度增加壓應力越大;退火後因薄膜與基板間熱膨脹係數的差異,使得殘留應力從初沉積之壓應力轉成張應力。從TEM影像顯示,退火前YSZ薄膜與石英基板介面之缺陷密度,隨著薄膜沉積厚度的增加而增厚。退火後之YSZ薄膜,其離子導電性隨張應力的增加而上升。
在Al2O3/YSZ之異質結構中,隨著Al2O3的厚度增加,有助於消除YSZ與石英基板之間介面的差排,類似即時退火(in-situ annealing)的作用。因Al2O3與YSZ之間熱膨脹係數的差異,經過800oC退火後,薄膜的張應力隨Al2O3厚度的增加而提升,使離子導電性提升。
(Al2O3/YSZ)n之複層結構中,由於Al原子於介面處的擴散,甚至進入YSZ薄膜造成離子的遷移受到阻礙,使整體的離子導電性隨周期增加而降低。

The microstructure and ionic conductivity of reactively sputtered yttria-stabilized zirconia (YSZ) films in various sputtering modes are systematically studied using a closed-loop controlled system with plasma emission monitoring. A transition-mode sputtering corresponding to 45% of target poisoning produces a microstructure with ultrafine crystallites embedded in the amorphous matrix, which undergoes an abnormal grain growth upon annealing. The ionic conductivity of such a film is found to be higher than that of poisoning mode by about a half order of magnitude, which in turn higher than the YSZ bulk by about one order of magnitude. Formation of an ultra-large grained YSZ film is believed to be responsible for the former comparison due to the suppression of the grain boundary blocking effect, while the latter comparison can be attributed to the interface effect.
The residual stress of YSZ film is evaluated by cos2αsin2ψ methodology. The XRD data result in that an in-plane compressive stress is applied to the as-deposited and annealed film. Oxygen vacancy provides a diffusion site and dictates the diffusivity of oxygen ions, while the radius of oxygen vacancy is dependent on the residual stress surrounding it. When the residual stress is shifted from a compressive to a tensile mode by thermal annealing, the radius of oxygen vacancy will be increased and the ionic conductivity will thus be enhanced.
In addition, variations of ionic conductivities of amorphous Al2O3/ YSZ (30 nm) hetero-structures with different Al2O3 coating were also investigated in this work. We found that aluminum ion bombardment induced enhancement of film crystallinity, eliminate of dislocation and release of interfacial residual stress in a nano-YSZ film near the surface of the quartz substrate during deposition of a-Al2O3 layer. After annealed at 800oC for 2hrs, the ionic conductivity of specimens is observed to increase with an increase of amorphous Al2O3 film thickness from 10 to 30 um, because of increasing of tensile stress at the interface.
However, the ionic conductivities of (Al2O3/YSZ)n nano-films on quartz substrate are found to periodically decrease with an increase of Al2O3 layer amount and all lower than that of single YSZ film. It due to that Al atom diffuses to YSZ layer to restrict oxygen ion migration, based upon analyses of TEM and EDS observations.

明志科技大學碩士學位論文指導教授推薦書 i
明志科技大學碩士學位論文口試委員審定書 ii
明志科技大學學位論文授權書 iii
誌謝 ………………………………………………………………………………...iv
摘要 …………………………………………………………………………………v
Abstract ………………………………………………………………………………...vi
目錄 ……………………………………………………………………………….viii
表目錄 …………………………………………………………………………………x
圖目錄 ………………………………………………………………………………...xi
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 1
1.3 研究目的 2
第二章 文獻回顧與基本理論 4
2.1 固態氧化物電解質簡介 4
2.1.1 螢石結構固態電解質 4
2.1.2 氧化鋯基固態電解質 4
2.2 異質結構的介面對氧化物電解質中離子導電性的影響 6
2.2.1 空間電荷區域於離子導體中的影響 6
2.2.2 介面應力對離子導電性的影響 7
2.3 反應式脈衝直流磁控濺鍍 10
2.3.1 反應式濺鍍 10
2.3.2 脈衝直流濺鍍 13
2.4 電漿診斷系統 15
2.4.1 電漿診斷 15
2.4.2 光學激發光譜儀 16
2.5 交流阻抗分析原理 18
第三章 實驗規劃與方法 24
3-1 濺鍍系統 24
3-2 實驗流程 26
3.2.1 靶材毒化率的影響 28
3.2.2 YSZ薄膜厚度的影響 29
3.2.3 Al2O3/YSZ異質結構的影響 29
3.2.4 (Al2O3/YSZ)n複層結構的影響 30
3-3 檢測分析儀器 31
3.3.1 X光繞射儀 31
3.3.2 場發射掃描式電子顯微鏡 33
3.3.3 高解析穿透式電子顯微鏡 34
3.3.4 交流阻抗分析儀 36
第四章 結果與討論 37
4-1 靶材毒化率的影響 37
4-1-1 靶材毒化率對薄膜結構的影響 37
4-1-2 靶材毒化率對薄膜之離子導電性影響 44
4-1-3 毒化率45%薄膜其異常晶粒成長之分析 45
4-2 薄膜厚度的影響 48
4-2-1 薄膜厚度與殘留應力的關係 48
4-2-2 殘留應力對離子導電性的影響 52
4-2-3 薄膜厚度對離子導電性的影響 54
4-3 Al2O3/YSZ異質結構的影響 63
4-4 (Al2O3/YSZ)n複層結構的影響 68
第五章 結論 75
第六章 參考文獻 76



1.Despotuli A. L. and Nikolaichik V.I.,”A step towards nanoionics”, Solid State Ionics 1993, 60, p275-278
2.Maier J. ”Nanoionics : ion transport and electrochemical storage in confined systems”, Nat. Mater. 2005, 4, p805-815
3.Minh N.O. ”Ceramic fuel-cells”, J. Am. Ceram. Soc. 1993, 76, p563-588
4.Shannon R.D. and Prewitt C.T., ”Effective ionic radii in oxides and fluorides” Acta Cryst. 1969, B25, p925-946
5.T.H. Etsell, S.N. Flengas, ”Electrical properties of solid oxide electrolytes” Chem. Rev. 1970, 70, p339-376
6.Sata N, Eberman K, Eberl K and Maier J, “Mesoscopic fast ion conduction in nanometer-scale planar heterostructures“ Nature, 2000, 408, p946-949
7.Kosacki I., Rouleau C.M., Becher P.F., Bentley J. and Lowndes D.H. “Nanoscale effects on the ionic conductivity in highly textured YSZ thin films” Solid State Ionics, 2005, 176, p1319-1326
8.Garcia-Barriocanal J., Rivera-Calzada A., Varela M., Sefrioui Z., Iborra E., Leon C., Pennycook S.J. and Santamaria, J., ”Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures” Science, 2008, 321, p676-680
9.Guo X., “Comment on "Colossal Ionic Conductivity at Interfaces of Epitaxial ZrO2:Y2O3/SrTiO3 Heterostructures” Science, 2009, 324, p465
10.Guo X. and Maier J., ”On the Hebb-Wagner polarisation of SrTiO3 doped with redox-active ions” Solid State Ionics, 2000, 130, p267-280.
11.Sata N, Jin-Phillipp N.Y., Eberl K. and Maier J, “Enhanced ionic conductivity and mesoscopic size effects in structures of BaF2 and CaF2” Solid State Ionics, 2002, 154, p497-502.
12.Peters A, Korte C, Hesse D, Zakharov N and Janek J, “Ionic conductivity and activation energy for oxygen ion transport in superlattices─The multilayer system CSZ (ZrO2+CaO)/Al2O3” Solid State Ion. 2007, 178, p67-76
13.Korte C, Peters A, Janek J, Hesse D and Zakharov N, “Ionic conductivity and activation energy for oxygen ion transport in superlattices─the semicoherent multilayer system YSZ (ZrO2+9.5 mol% Y2O3)/Y2O3” Phys. Chem. Chem. Phys. 2008, 10, p4623-4635
14.Schichtel N, Korte C, Hesse D and Janek J, “Elastic strain at interfaces and its influence on ionic conductivity in nanoscaled solid electrolyte thin films-theoretical considerations and experimental studies“ Phys. Chem. Chem. Phys. 2009, 11, p3043-3048
15.Korte C, Schichtel N, Hesse D and Janek J, “Influence of interface structure on mass transport in phase boundaries between different ionic materials Experimental studies and formal considerations“ Monatsh. Chem. 2009, 140, p1069-1080
16.Gerhardt R, Nowick A S, Mochel M E and Dumler I, ”Grain-boundary Effect in ceria doped with trivalent cations : II. Microstructure and microanalysis” J. Am. Ceram. Soc. 1986 69, p647-651
17.Badwal S P S and Rajendran S, “EFFECT OF MICROSTRUCTURES AND NANOSTRUCTURES ON THE PROPERTIES OF IONIC CONDUCTORS” Solid State Ion., 1994 70, p83-95
18.Aoki M, Chiang Y M, Kosacki I, Lee J R, Tuller H L and Liu Y J, “Solute segregation and grain-boundary impedance in high-purity stabilized zirconia” J. Am. Ceram. Soc. 1996, 79, p1169-1180
19.Jiang S.H. and Wagner J.B., “A theoretical-model for composite electrolytes─I. space-charge layer as a cause for charge-carrier enhancement” J. Phys. Chem. Solids, 1995, 56, p1101-1111
20.Maier J. “Ionic conduction in space charge regions”, Prog. Solid State Chem. 1995, 23, p171-263
21.Sata N, Jin-Phillipp N.Y., Eberl K. and Maier J, “Enhanced ionic conductivity and mesoscopic size effects in structures of BaF2 and CaF2” Solid State Ionics, 2002, 154, p497-502
22.Maier J. ” Nano-sized mixed conductors (Aspects of nano-ionics. Part III)” Solid State Ion. 2002, 148, p367-374
23.Maier J, “Defect chemistry and ion transport in nanostructured materials - Part II. Aspects of nanoionics” Solid State Ion. 2003, 157, p327-334
24.Maier J, “Ionic transport in nano-sized systems” Solid State Ion. 2004, 175, p7-12
25.Maier J. ”Nanoionics : ion transport and electrochemical storage in confined systems”, Nat. Mater. 2005, 4, p805-815
26.Chiang Y-M, Lavik E, Kosacki I, Tuller H L and Ying J Y, “Defect and transport properties of nanocrystalline CeO2-x” Appl. Phys. Lett.,1996, 69 p185-187
27.Tschöpe A, Sommer E and Birringer R, “Grain size-dependent electrical conductivity of polycrystalline cerium oxide I. Experiments” Solid State Ion. 2001, 139, p255-265
28.Kim S and Maier J, “On the conductivity mechanism of nanocrystalline ceria” J. Electrochem. Soc. 2002, 149, J73-J83
29.Maier J, “Nano-ionics: More than just a fashionable slogan” J. Electrochem. Soc. 2004 13, p593-598
30.Tuller H T, “Ionic conduction in nanocrystalline materials” Solid State Ion. 2000, 131, p143-157
31.Mitsuhiro N., Shin-ichi N, Kimihiro S and Tomonobu H., “Growth dependence of reactively sputtered yttria-stabilized zirconia on Si (100), (110) and (111) substrates”, Jpn. J. Appl. Phys., 1999, 38, L74-L77
32.Susumu H. and Takuji K., “Increase of dielectric constant of an epitaxial (100) yttria-stabilized zirconia films on (100) Si substrate deposited by reactive sputtering in the metallic mode”, Jpn. J. Appl. Phys., 2001, 40, 6547-6551
33.I. Safi, “Recent aspects concerning DC reactive magnetron sputtering of thin films: A review” Surf. Coat. Technol. 2000, 127, p203-219
34.Schiller S, Beister G. and Sieber W. “Reactive high rate DC sputtering deposition rate stoichiometry and feature of TiOx and TiNx films with respect to the target mode” Thin Solid Films, 1984, 111, p259-268
35.May C. and Strümpfel J. ”ITO coating by reactive magnetron sputtering comparison of properties from DC and MF processing” Thin Solid Films, 1999, 351, p48-52
36.Patel H., Saif M. and Memarian H., ” Reactive sputter deposition of indium tin oxide films onto polymeric webs using optical emission spectroscopy and mass spectroscopy as process monitoring and control” Surf. Coat. Technol. , 1997, 94-95, p583-586
37.Zeng X.T., “TiN/NbN superlattice hard coatings deposited by unbalanced magnetron sputtering” Surf. Coat. Technol. 1999, 113, p75-79
38.Perry F., Billard A. and Frantz C. “An optical emission spectroscopy study of a reactive magnetron sputtering Ar-O2 discharge modulated at low frequency” Surf. Coat. Technol., 1997, 94-95, p681-685
39.葉宗和(2007),氧化鋯材料相變韌化機制研究與離子導電性之應用,台灣科技大學機械工程系博士論文
40.Bauerle J.E., “Study of solid electrolyte polarization by a complex admittance method”, J. Phys. Chem. Solids, 1969, 30, p2657-2670
41.JCPDS #82-1246
42.Robert E. and Reed-Hill, “Physical metallurgy principles, 3rd ed.”, PWS publish Co., Boston, p251-267
43.Mullins W.W., “The effect of thermal grooving on grain boundary motion,” Acta Met., 1958, 6, p414-427
44.Christensen A, “First-principles study of the surfaces of zirconia”, Phys. Rev. B , 1998, 58, p8050-8064
45.Ma C.-H., Huang J.-H. and Chen Haydn, “Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction” Thin Solid Films, 2002, 418, p73-78
46.Lakki A., Herzog R., Weller M., Schubert H., Reetz C., Gorke O., Kilo M., and Borchardt G., “Mechanical loss, creep, diffusion and ionic conductivity of ZrO2-8 mol%Y2O3 polycrystals” J. Eur. Ceram. Soc. 2000, 20, p285-296
47.Atkinson A. and Selcuk A., “Mechanical behaviour of ceramic oxygen ion-conducting membranes” Solid State Ion, 2000, 134, p59-66
48.Adams J.W., Ruh R., Mazdiyasni K.S., “Young's modulus, flexural strength, and fracture of yttria-stabilized zirconia versus temperature” J. Am. Ceram. Soc. 1997, 80 p903-908
49.Karthikeyan A., Chang C.L. and Ramanathan S., ”High temperature conductivity studies on nanoscale yttria-doped zirconia thin films and size effects”, Appl. Phys. Lett. 2006, 89, 183116
50.Oka Nobuto, Arisawa Ryo, Miyamura Amica, Sato Yasushi, Yagi Takashi et al, “Thermophysical properties of aluminum oxide and molybdenum layered films” Thin Solid Films, 2010, 518, p3119-3121
51.Wang J.L., Yu Y.H., Lee S.C. and Chung Y.W., “Tribological and optical properties of crystalline and amorphous alumina thin films grown by low-temperature reactive magnetron sputter-deposition” Surf.Coat. Technol., 2001, 146, p189-194
52.Murray J., Song K., Huebner W. and O’Keefe M., ”Electron beam induced crystallization of sputter deposited amorphous alumina thin films” Mater. Lett., 2012, 74, p12-15

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔